철골조의 연쇄붕괴 민감도 해석

Sensitivity Analysis of Steel Frames Subjected to Progressive Collapse

  • 발행 : 2008.06.30

초록

최근 구조물의 국부적인 손상이 전체적인 붕괴로 이어지는 연쇄붕괴 현상에 관한 연구가 활발히 진행되고 있다. 연쇄붕괴에 관한 기존의 연구는 대부분 해석변수의 불확실성을 포함하지 않는 확정론적인 방법이므로, 해석결과에 대한 신뢰도를 알 수 없다. 본 논문에서는 재료의 항복강도, 활하중의 크기, 감쇠비, 탄성계수 등치 설계변수들이 기둥이 제거됨에 따라 발생하는 수직변위에 영향을 미치는 민감도를 분석하였다. 이를 위하여 몬테카를로 시뮬레이션, 일계이차법, 토네이도 다이어그램의 세 가지 해석기법을 적용하였다. 비선형정적 해석결과에 의하면 난수로 설정한 해석변수들 중에서 보의 항복강도가 수직변위의 변동폭이 가장 컸으며, 비선형동적해석의 경우 보의 항복강도와 감쇠비가 서로 유사한 변동폭을 가지는 것으로 나타났다.

Recently a lot of researches have been conducted on the progressive collapse of structures which is the total collapse of structures initiated by localized damage. Most of the previous studies on the field of progressive collapse have followed deterministic approach without considering uncertainty involved in design variables, which results in unknown reliability of the analysis results. In this study the sensitivity analyses are carried out with design variables such as yield strength, live load, damping ratio, and elastic modulus on the vertical deflection of the joint from which a column is suddenly removed. The Monte Calro simulation, tornado diagram method, and the first order second moment method(FOSM) are applied for the sensitivity study. According to the nonlinear static analysis results, the vertical deflection is most affected by the variation of yield strength of beams. The nonlinear dynamic analyses show that the behaviour of model structures is highly sensitive to variation of the yield strength of beams and the structural damping ratio.

키워드

참고문헌

  1. 김종락, 김성배, 박양희, 정웅기 (2000) 용접구조용 압연강재 SM490의 제성질에 관한 통계적 연구, 대한건축학회 논문집, 16(11)
  2. 김종락, 김성배, 박양희, 정웅기 (2000) 일반구조용 압연강재 SS400의 제성질에 관한 통계적 연구, 대한건축학회 학술발표대회논문집, 20(1)
  3. 대한건축학회 (2005) 건축구조설계기준
  4. Ang, A.H-S., Tang, W-H., (1975) Probability concepts in engineering planning and design, John Wiley & Sons, pp199-201
  5. GSA, (2003) Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects, The U.S. General Services Administration. Washington D.C
  6. Harris, M.E., Corotis, R.B., Bova, C.J. (1981) Area-dependent processes for structural live loads, Journal of Structural Division, ASCE, 107(ST5)
  7. Kaewkulchai G., Williamson E. B. (2003) Dynamic Behavior of Planar Frames during Progressive Collapse, 16th ASCE Engineering Mechanics Conference
  8. Krauthammer, T., Hall, R.L., Woodson, S.C., Baylot, J.T., Hayes, J.R., Sohn, Y. (2002) Developement of progressive collapse analysis procedure and condition assessment for structures, The Multihazard Mitigation Council of the National Institute of Building Sciences, Report on the July 2002 National Workshop and Recommendations for Future Effort.
  9. Krawinkler, H., Gupta, A., Medina, R., Uco, N. (2000) Loading Histories for Seismic Performance Testing of SMRF Components and Assemblies, SAC/BD-00/10
  10. Lee, T.H., Mosalam, K.M. (2006) Probabilistic seismic evaluation of reinforced concrete structural components and systems, PEER Technical Report 2006/04, University of California, Berkeley, CA, USA
  11. MATLAB Version 7.3 (2006) The Mathwork, Inc., Natick, MA
  12. Mazzoni, S., McKenna, F., Fenves, G. (2005) OpenSees Command Language Manual, Pacific Earthquake Engineering Research (PEER) Center
  13. Porter, K.A., Beck, J.L., Shaikhutdinov. R.V. (2002) Sensitivity of building loss estimates to major uncertain variables. Earthquake Spectra, 18(4), pp.719-743 https://doi.org/10.1193/1.1516201
  14. Unified Facilities Criteria (UFC)-DoD (2005) Design of buildings to resist progressive collapse, department of defense