Particle Size and Reaction Temperature Effects on the Hydrolysis Reaction of Zinc in TGA (Thermo Gravimetric Analyzer)

열 중량 분석기에서 zinc 입자 크기와 반응 온도에 따른 물 분해 특성 연구

  • Ahn, Seung-Hyuck (Grad. School of Industrial Chemistry, Chungnam National Univ.) ;
  • Kang, Kyoung-Soo (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kim, Chang-Hee (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Bae, Ki-Kwang (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Grad. School of Industrial Chemistry, Chungnam National Univ.) ;
  • Park, Chu-Sik (Hydrogen Energy Research Center, Korea Institute of Energy Research)
  • 안승혁 (충남대학교 공업화학과) ;
  • 강경수 (한국 에너지 기술 연구원 수소에너지 연구 센터) ;
  • 김창희 (한국 에너지 기술 연구원 수소에너지 연구 센터) ;
  • 배기광 (한국 에너지 기술 연구원 수소에너지 연구 센터) ;
  • 김영호 (충남대학교 공업화학과) ;
  • 박주식 (한국 에너지 기술 연구원 수소에너지 연구 센터)
  • Published : 2008.08.30

Abstract

ZnO/Zn redox cycle is the one of the promising thermochemical cycles for hydrogen production via water splitting with high temperature heat source like a concentrated solar energy. This paper reports the particle size effect of Zinc on water splitting behavior. Water splitting reaction experiments were carried out at isothermal conditions of 350 and 400$^{\circ}C$ in TGA (Thermo Gravimetric Analyzer) using four commercial Zinc powders (nano, <10 ${\mu}m$, <150 ${\mu}m$ and $150{\sim}600\;{\mu}m$ particle sizes). Before the experiments, average particle size of Zinc powders was analyzed by PSA (Particle Size Analysis). After the experiments, XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) analyses were conducted on the samples. The experimental results showed that particle size had a effect on the conversion of Zinc to ZnO. Zinc conversion was increased, as the particle size decreased. Especially, the nano size particles were aggregated and the particle's morphology changed on the surface during hydrolysis reaction.

Keywords

References

  1. Funk J. E. and Reinstrom, R. M., 'Energy requirements in the production of hydrogen from water', Ind. Eng. Chem. Proc. Des. Develop., Vol. 5, 1966, pp. 336-342 https://doi.org/10.1021/i260019a025
  2. Funk J. E, 'Thermochemical production of hydrogen via multistage water splitting processes.', International journal of hydrogen energy, Vol. 1, 1976, pp. 33-43 https://doi.org/10.1016/0360-3199(76)90007-0
  3. A. Steinfeld, 'Solar thermochemical production of hydrogen-a review.', Solar Energy, Vol. 78, 2005, pp. 603-615 https://doi.org/10.1016/j.solener.2003.12.012
  4. T. Nakamura, 'Hydrogen production from water utilizing solar heat at high temperatures', Solar Energy, Vol. 19, 1977, pp. 467-475 https://doi.org/10.1016/0038-092X(77)90102-5
  5. F. Sibieude, M. Ducarroir, A. Tofighi and J. Ambriz, 'High-temperature experiments with a solar furnace: the decomposition of $Fe_3O_4$, $Mn_3O_4$, CdO', International journal of hydrogen energy, Vol. 7, 1982, pp. 79-88 https://doi.org/10.1016/0360-3199(82)90209-9
  6. M. Lundberg, 'Model calculations on some feasible two-step water splitting processes', International journal of hydrogen energy, Vol. 18, 1993, pp. 369-376 https://doi.org/10.1016/0360-3199(93)90214-U
  7. R.D. Palumbo, A. Rouanet and G. Pichelin, 'The solar thermal decomposition of $TiO_2$ above 2200 K and its use in the production of Zn from ZnO', Energy, Vol. 20, 1995, pp. 857-868 https://doi.org/10.1016/0360-5442(95)00040-N
  8. K. Ehrensberger, A. Frei, P. Kuhn, H.R. Oswald and P. Hug, 'Comparative experimental investigations on the water-splitting reaction with iron oxide $Fe_{1-y}O$ and iron manganese oxides $(Fe_{1-x}Mn_x)_{1-y}O$', Solid state ionics, Vol. 78, 1995, pp. 151-160 https://doi.org/10.1016/0167-2738(95)00019-3
  9. Y. Tamaura, A. Steinfeld, P. Kuhn and K. Ehrensberger, 'Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle', Energy, Vol. 20, 1995, pp. 325-330 https://doi.org/10.1016/0360-5442(94)00099-O
  10. A. Steinfeld, S. Sanders and R. Palumbo, 'Design aspects of solar thermochemical engineering', Solar energy, Vol. 65, 1999, pp. 43-53 https://doi.org/10.1016/S0038-092X(98)00092-9
  11. M. Forster, 'Theoretical investigation of the system $SnO_x/Sn$ for the thermochemical storage of solar energy', Energy Vol. 29, 2004, pp. 789-799 https://doi.org/10.1016/S0360-5442(03)00185-3
  12. 우성웅, 강경수, 김창희, 박주식, "Cu-ferrite에 의한 메탄의 부분산화", 한국수소 및 신에너지학회 논문집, Vol. 18 , No. 2, 2007, pp. 124-131
  13. 조미선, 김우진, 김창희, 강경수, 김영호, 박주식, "고 에너지 볼 밀링을 통한 Co-ferrite 제조 및 열적 환원에 대한 연구", 한국수소 및 신에너지학회 논문집, Vol. 17, No. 3, 2006, pp. 309-316
  14. Bilgen E and Bilgen C., 'Solar hydrogen production using two-step thermochemical cycles', International journal of hydrogen energy, Vol. 7, 1982, pp. 637-644 https://doi.org/10.1016/0360-3199(82)90188-4
  15. A. Weidenkaff, A.W. Reller, A. Wokaun and A. Steinfeld, 'Thermogravimetric analysis of the ZnO/Zn water splitting cycle', Thermochimica acta, Vol. 359, 2000, pp. 69-75 https://doi.org/10.1016/S0040-6031(00)00508-6
  16. Hans H. Funke, Henry Diaz, Xinhua Liang, Casey S. Carney, Alan W. Weimer and Peng Li, 'Hydrogen generation by hydrolysis of zinc powder aerosol', International journal of hydrogen energy, Vol. 33, 2008, pp. 1127-1134 https://doi.org/10.1016/j.ijhydene.2007.12.061
  17. Irina Vishnevetsky and Michael Epstein, 'Production of hydrogen from solar zinc in steam atmosphere', International journal of hydrogen energy, Vol. 32, 2007, pp. 2791-2802 https://doi.org/10.1016/j.ijhydene.2007.04.004