DOI QR코드

DOI QR Code

Variation of Calcium Carbonate Content and Dansgaard-Oeschger Events in the Continental Slope of the Central Bering Sea during the Last 65 Kyr

베링해 중부 대륙사면 지역의 지난 65,000년 동안 탄산염 함량 변화와 Dansgaard-Oeschger 사건들

  • Kim, Sung-Han (Division of Earth Environmental System Pusan National University) ;
  • Khim, Boo-Keun (Division of Earth Environmental System Pusan National University) ;
  • Itaki, Takuya (Division of Earth Environmental System Pusan National University) ;
  • Shin, Hye-Sun (Division of Earth Environmental System Pusan National University)
  • 김성한 (부산대학교 지구환경시스템학부) ;
  • 김부근 (부산대학교 지구환경시스템학부) ;
  • ;
  • 신혜선 (부산대학교 지구환경시스템학부)
  • Published : 2008.09.30

Abstract

A piston core (MR06-04 PC23A) collected from the northern continental slope in the central Bering Sea has recorded the high-resolution millennial-scale variation of calcium carbonate ($CaCO3$) content during the last 65 kyr. An estimation of the age of the core sediments was carried out by using the lithologic correlation of the deglacial laminated layers with a neighboring core (HLY02023JPC), complementing the last appearance datum of both Lychnocanoma nipponica sakaii (54 kyr) and Amphimelissa setosa (85 kyr). The probable age of core MR06-04 PC23A was approximately younger than 65 kyr. Two distinct events of a significant increase of $CaCO3$ in the deglacial laminated sediments clearly correspond to MWP1A and MWP1B in the Bering Sea (Gorbarenko et al. 2005) and to T1ANP and T1BNP in the North Pacific (Gorbarenko 1996). These pronounced peaks of $CaCO3$ contents result from the elevated carbonate production in the surface water and the subsequent weakened dilution due to terrestrial input, along with an enhanced oxygen minimum zone. The $CaCO3$ contents are low (${\sim}2%$) during the last glacial period mainly because of a low carbonate production caused by an expanded sea-ice cover and an increased dilution by terrigenous particles due to their closer distance to the continent during the sea-level low stand. The occurrence of seven distinct $CaCO3$ peaks in core MR06-04 PC23A is remarkable during MIS 3 and MIS 4, and they most likely correlate to the short-term millennial Dansgaard-Oeschger events.

Keywords

References

  1. Barnola, J.M., D. Raynaud, Y.S. Korotkevich, and C. Lorius. 1987. Vostok ice core provides 160,000-year record of atmospheric $CO_2$. Nature, 329, 408-414 https://doi.org/10.1038/329408a0
  2. Behl, R.J. and J.P. Kennett. 1996. Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr. Nature, 379, 243-246 https://doi.org/10.1038/379243a0
  3. Bond, G.C. and R. Lotti. 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science, 267, 1005-1010 https://doi.org/10.1126/science.267.5200.1005
  4. Bond, G., W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, and G. Bonani. 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365, 143-147 https://doi.org/10.1038/365143a0
  5. Brunelle, B.G., D.M. Sigman, M.S. Cook, L.D. Keigwin, G.H. Haug, B. Plessen, G. Schettler, and S.L. Jaccard. 2007. Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanogr., 22, PA1215. doi:10.1029/2005PA001205
  6. Cook, M.S., L.D. Keigwin, and C.A. Sancetta. 2005. The deglacial history of surface and intermediate water of the Bering Sea. Deep-Sea Res. II, 52, 2163-2173 https://doi.org/10.1016/j.dsr2.2005.07.004
  7. Dansgaard, W., S.J. Johnsen, H.B. Clausen, D. Dahl-Jensen, N.S. Gundestrup, C.U. Hammer, C.S. Hvidberg, J.P. Steffensen, A.E. Sveinbjornsdottir, J. Jouzel, and G. Bond. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218-220 https://doi.org/10.1038/364218a0
  8. Fairbanks, R.G. 1989. A 17000-year glacio-eustatic sea-level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637-642 https://doi.org/10.1038/342637a0
  9. Favorite, F., A.J. Dodimead, and K. Nasu. 1976. Oceanography of the subarctic Pacific region, 1960-71. Bull. Intern. North Pacific Comm., 33, 1-187
  10. Feely, R.A., C.L. Sabine, K. Lee, F.J. Millero, M.F. Lamb, D. Greeley, J.L. Bullister, R.M. Key, T.-H. Peng, A. Kozyr, T. Ono, and C.S. Wong. 2002. In situ calcium carbonate dissolution in the Pacific Ocean. Glob. Biogeochem. Cycles, 16, 1144. doi:10.1029/2002GB001866
  11. Gorbarenko, S.A. 1996. Stable isotope and lithologic evidence of Late-Glacial and Holocene Oceanography of the northwestern Pacific and its marginal seas. Quat. Res., 46, 230-250 https://doi.org/10.1006/qres.1996.0063
  12. Gorbarenko, S.A., I.A. Basov, M.P. Chekhovskaya, J. Southon, T.A. Khusid, and A.V. Artemova. 2005. Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene: Geochemical and paleontological evidence. Deep-Sea Res. II, 52, 2174-2185 https://doi.org/10.1016/j.dsr2.2005.08.005
  13. Griffin, J.M. 2003. Global Climate Change: The science, economics and politics. Edward Elgar, Cheltenham, UK. 280 p
  14. Hendy, I.L. and J.P. Kennett. 2000. Dansgaard-Oeschger cycles and the California Current system: Planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program Hole 893A. Paleoceanogr., 15, 30-42 https://doi.org/10.1029/1999PA000413
  15. Honjo, S. 1990. Particle fluxes and modern sedimentation in the polar oceans. p. 687-739. In: Polar oceanography, ed. by W.O. Smith. Academic Press, New York
  16. Hood, D.W. 1983. The Bering Sea. p. 337-373. In: Estuaries and enclosed Seas, ed. by B.H. Ketchum. Elsevier Scientific Pub. Co
  17. Itaki, T., N. Komatsu, and I. Motoyama. 2007. Orbital- and millennial-scale changes of radiolarian assemblages during the last 220 kyrs in the Japan Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 247, 115-130 https://doi.org/10.1016/j.palaeo.2006.11.025
  18. Johnsen, S.J., H.B. Clausen, W. Dansgaard, N.S. Gundestrup, C.U. Hammer, and H. Tauber. 1995. The eem stable isotope record along the GRIP ice core and its interpretation. Quat. Res., 43, 117-124 https://doi.org/10.1006/qres.1995.1013
  19. Katsuki, K. and K. Takahashi. 2005. Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary. Deep-Sea Res. II, 52, 2110-2130 https://doi.org/10.1016/j.dsr2.2005.07.001
  20. Khen, G.V. 1999. Hydrography of western Bering Sea shelf water. p. 161-176. In: Dynamics of the Bering Sea, ed. by T.R. Loughlin and K. Ohtani. Univ. Alaska Sea Grant, Fairbanks
  21. Kiefer, T., M. Sarnthein, H. Erlenkeuser, P.M. Grootes, and A.P. Roberts. 2001. North Pacific response to millennialscale changes in ocean circulation over the last 60 kyr. Paleoceanogr., 16, 179-189 https://doi.org/10.1029/2000PA000545
  22. Martinson, D.G., N.G. Pisias, J.D. Hays, J. Imbrie, T.C. Moore, and N.J. Shackleton. 1987. Age dating and the orbital theory of ice ages: Development of a highresolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27, 1-29 https://doi.org/10.1016/0033-5894(87)90046-9
  23. Maykut, G.A. 1978. Energy exchange over young sea ice in the central Arictic. J. Geophys. Res., 83, 3646-3658 https://doi.org/10.1029/JC083iC07p03646
  24. Morley, J.J. and S.W. Robinson. 1986. Improved method for correlating late Pleistocene/Holocence records from the Bering Sea: Application of a biosiliceous/geochemical stratigraphy. Deep-Sea Res., 33, 1203-1211 https://doi.org/10.1016/0198-0149(86)90020-8
  25. Niebauer, H.J. 1998. Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947-1996. J. Geophys. Res., 103, 27717-27737 https://doi.org/10.1029/98JC02499
  26. Niebauer, H.J., N.A. Bond, L.P. Yakunin, and V.V. Plotnikov. 1999. An update on the climatology and sea ice of the Bering Sea. p. 29-59. In: Dynamics of the Bering Sea, ed. by T.R. Loughlin and K. Ohtani. Univ. Alaska Sea Grant, Fairbanks
  27. Okazaki, Y., K. Takahashi, H. Asahi, K. Katsuki, J. Hori, H. Yasuda, Y. Sagawa, and H. Tokuyama. 2005. Productivity changes in the Bering Sea during the late Quaternary. Deep-Sea Res. II, 52, 2150-2162 https://doi.org/10.1016/j.dsr2.2005.07.003
  28. Penrose, N. 1982. Biogenic sediments. p. 455-492. In: Marine Geology, ed. by J.P. Kennett. Prentice-Hall, INC., Englewood Cliffs
  29. Petit, J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, and M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429-436 https://doi.org/10.1038/20859
  30. Sancetta, C. 1983. Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea. Deep-Sea Res., 30, 851-869 https://doi.org/10.1016/0198-0149(83)90004-3
  31. Sancetta, C., L. Heusser, L. Labeyrie, S.A. Naidu, and S.W. Robinson. 1985. Wisconsin-Holocene paleoenvironment of the Bering Sea: Evidence from diatoms, pollen, oxygen isotopes and clay minerals. Mar. Geol., 62, 55- 68 https://doi.org/10.1016/0025-3227(84)90054-9
  32. Scipps Institution of Oceanography. 1973. Initial reports of the deep sea drilling project, Vol. 19, National Science Foundation, Washington (US Goverment Printing Office). 913 p
  33. Stabeno, P.J., J.D. Schumacher, and K. Ohtani. 1999. The physical oceanography of the Bering Sea. p. 1-28. In: Dynamics of the Bering Sea, ed by. T.R. Loughlin and K. Ohtani. Univ. Alaska Sea Grant, Fairbanks
  34. Takahashi, K. 1998. The Bering and Okhotsk Seas: Modern and paleoceanographic changes and gateway impact. J. Asian Earth Sci., 16, 49-58 https://doi.org/10.1016/S0743-9547(97)00048-2
  35. Takahashi, K. 2005. The Bering Sea and paleoceanography. Deep-Sea Res. II, 52, 2080-2091 https://doi.org/10.1016/j.dsr2.2005.08.003
  36. Taylor, K.C., G.W. Lamorey, R.B. Doyle, R.B. Alley, P.M. Grootes, P.A. Mayewski, J.W.C. White, and L.K. Barlow. 1993. The 'flickering switch' of late Pleistocene climate change. Nature, 361, 432-436 https://doi.org/10.1038/361432a0

Cited by

  1. Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period vol.27, pp.3, 2012, https://doi.org/10.1029/2011PA002205
  2. Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments: evidence from the radiolarian speciesCycladophora davisiana vol.24, pp.8, 2009, https://doi.org/10.1002/jqs.1356