DOI QR코드

DOI QR Code

Regional Comparisons of Heterotrophic Protists Grazing Impacts and Community in Northwest Pacific Ocean

북서태평양에서 종속영양 원생생물 군집 및 섭식압의 해역별 비교

  • 양은진 (한국해양연구원 해양생물자원연구부) ;
  • 주세종 (한국해양연구원 해양생물자원연구부) ;
  • 김웅서 (한국해양연구원 여수엑스포 지원TFT)
  • Published : 2008.09.30

Abstract

Community structure of heterotrophic protists and their grazing impact on phytoplankton were studied in Northwest Pacific Ocean during October, 2007. The study area was divided into four regions based on physical properties (temperature and salinity) and chlorophyll-a distribution. They were Region I of North Equatorial Currents, Region II of Kuroshio waters, Region III of shelf mixed water, and Region IV of Tsushima warm current from East China Sea. The distribution of chlorophyll-a concentrations and community structure of heterotrophic protists were significantly affected by physical properties of the water column. The lowest concentration of chlorophyll-a was identified in Region I and II, where pico-sized chlorophyll-a was most dominant (>80% of total chlorophyll-a). Biomass of heterotrophic protists was also low in Region I and II. However, Region III was characterized by low salinity and temperature and high chlorophyll-a concentration, with relatively lower pico-sized chlorophyll-a dominance. The Highest biomass of heterotrophic protists appeared in Region III, along with the relatively less important nanoprotists. In Region I, II and IV, heterotrophic dinoflagellates were dominant among the protists, while ciliates were dominant in Region III. Community structure varied with physical(salinity and temperature) and biological (chlorophyll-a) properties. Biomass of heterotrophic protists correlated well with chlorophyll-a concentration in the study area ($r^2=0.66$, p<0.0001). The potential effect of grazing activity on phytoplankton is relatively high in Region I and II. Our result suggest that biomass and size structure of heterotrophic protists might be significantly influenced by phytoplankton size and concentration.

Keywords

References

  1. 한국해양연구원. 2007. 북서 태평양이 한반도 주변해(대한해 협)에 미치는 영향연구. 783 p
  2. Archer, S.D., R.J.G. Leakey, P.H. Burkill, and M.A. Sleigh. 1996. Microbial dynamics in coastal waters of east Antarctica: Herbivory by heterotrophic dinoflagellates. Mar. Ecol. Prog. Ser., 139, 239-255 https://doi.org/10.3354/meps139239
  3. Azam, F., T. Fenchel, J.G. Field, F.S. Gray, and L.A. Meyer- Reil. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257-263 https://doi.org/10.3354/meps010257
  4. Beers, J.R. and G.L. Stewart. 1971. Microzooplankton in the plankton community of the upper waters of the Eastern Tropical Pacific. Deep-Sea Res., 18, 861-883 https://doi.org/10.1016/0011-7471(71)90061-1
  5. Berninger, U.G., B.J. Finlay, and P. Kuuppo-Leinikki. 1991. Protozoa control of bacterial abundances in freshwater. Limnol. Oceanogr., 36, 139-147 https://doi.org/10.4319/lo.1991.36.1.0139
  6. Borsheim, K.Y. and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bacterivorus Monas sp. enriched from sea waters. Mar. Ecol. Prog. Ser., 36, 171-175 https://doi.org/10.3354/meps036171
  7. Burkill, P.H., E.S. Edwards, and M.A. Sleigh. 1995. Microzooplankton and their role in controlling phytoplankton growth in the marginal ice zone of the Bellingshausen Sea. Deep-Sea Res. II, 42, 1277-1290 https://doi.org/10.1016/0967-0645(95)00060-4
  8. Calbet, A. and M.R. Landry. 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine system. Limnol. Oceanogr., 49, 51-57 https://doi.org/10.4319/lo.2004.49.1.0051
  9. Chavez, F.P., K.R. Buck, S.K. Service, J. Newton, and R.T. Barber. 1996. Phytoplankton variability in the central and eastern tropical Pacific. Deep-Sea Res. II, 43, 835-870 https://doi.org/10.1016/0967-0645(96)00028-8
  10. Chen, L.Y-L. 2000. Comparisons of primary productivity and phytoplankton size structure in the marginal region of the Southern East China Sea. Cont. Shelf Res., 20, 437-458 https://doi.org/10.1016/S0278-4343(99)00080-1
  11. Chiang, K.P., C.Y. Lin, C.H. Lee, F.K. Shiah, and J. Chang. 2003. The coupling of oligotrich ciliate populations and hydrography in the East China Sea: Spatial and temporal variations. Deep-Sea Res. II, 50, 1279-1293 https://doi.org/10.1016/S0967-0645(03)00023-7
  12. Chrzanowski, T.H. and K. Simek. 1993. Bacterial growth and losses due to bacterivory in a mesotrophic lake. J. Plank. Res., 15, 771-785 https://doi.org/10.1093/plankt/15.7.771
  13. Cushing, D.J. 1989. A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J. Plank. Res., 11, 1-13 https://doi.org/10.1093/plankt/11.1.1
  14. Dolan, J.R. and C. Marrase. 1995. Planktonic ciliates distribution relative to a deep chlorophyll maximum: Catalan Sea, N.W. Mediterranean, June 1993. Deep-Sea Res. I, 42, 1965-1987 https://doi.org/10.1016/0967-0637(95)00092-5
  15. Edler, L. 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Baltic Marine Biologists. 13-25
  16. Garrison, D.L., M.M. Gowing, and M.P. Hughes. 1998. Nano-and microplankton in the northern Arabian sea during the southwest Monsoon, August-September, 1995 A US-JGOFS study. Deep-Sea Res. II, 45, 2269-2299 https://doi.org/10.1016/S0967-0645(98)00071-X
  17. Hall, J.A., M.R. James, and J.M. Bradford-Grieve. 1999. Structure and dynamics of the pelagic microbial food web of the subtropical convergence region east of New Zealand. Aqua. Microb. Ecol., 20, 95-105 https://doi.org/10.3354/ame020095
  18. Hansen, P.J. 1992. Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol., 114, 327-334 https://doi.org/10.1007/BF00349535
  19. Kimor, B. 1981. The role of phagotrophic dinoflagellates in marine ecosystems. Kiel. Meeresforsch (Sondbd.), 5, 164-173
  20. Landry, M.R. and R.P. Hassett. 1982. Estimating the grazing impact of marine microzooplankton. Mar. Biol., 67, 283-288 https://doi.org/10.1007/BF00397668
  21. Landry, M.R. and D.L Kirchman. 2002. Microbial community structure and variability in the trophical Pacific. Deep-Sea Res. II, 49, 2669-2693 https://doi.org/10.1016/S0967-0645(02)00053-X
  22. Landry, M.R., J. Constantinou, and J. Kirshtein. 1995. Microzooplankton grazing in the central equatorial Pacific during February and August, 1992. Deep-Sea Res. II, 42, 657-671 https://doi.org/10.1016/0967-0645(95)00024-K
  23. Landry, M.R., S.L. Brown, J. Neveux, D. Dupouy, J. Blanchot, S. Christensen, and R.R. Bidigare. 2003. Phytoplankton growth and microzooplankton grazing in high-nutrient, low-chlorophyll waters of the equatorial Pacific: Community and taxon-specific rate assessment from pigment and flow cytometric analysis. J. Geophys. Res., 108, 8142 https://doi.org/10.1029/2000JC000744
  24. Legendre, L. and F. Rassoulzadegan. 1995. Plankton and nutrient dynamics in marine waters. Ophelia, 41, 153-172 https://doi.org/10.1080/00785236.1995.10422042
  25. Levinsen, H., T.G. Nielsen, and B.W. Hansen. 1999. Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. II. Heterotrophic dinoflagellates and ciliates. Aquat. Microb. Ecol., 16, 217-232 https://doi.org/10.3354/ame016217
  26. Mackey, D.J., J. Parslow, F.B. Griffiths, H.W. Higgins, and B. Tilbrook. 1997. Phytoplankton productivity and the carbon cycle in the western Equatorial Pacific under El Nino and non-El Nino conditions. Deep-Sea Res. II, 44, 1951-1978 https://doi.org/10.1016/S0967-0645(97)00033-7
  27. Menden-Deuer, S. and E.J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnol. Oceangr., 45, 569-579 https://doi.org/10.4319/lo.2000.45.3.0569
  28. Michaels, A.F., D.A. Caron, N.R. Swanberg, F.A. Howse, and C.M. Michaels. 1995. Planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near bermuda: Abundance, biomass and vertical flux. J. Plankton Res., 17, 131-163 https://doi.org/10.1093/plankt/17.1.131
  29. Ota, T. and A. Taniguchi. 2003. Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and cotribution to nutrient regeneration. Deep-Sea Res. II, 50, 423-442 https://doi.org/10.1016/S0967-0645(02)00461-7
  30. Pierce, R.W. and J.F. Turner. 1992. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci., 6, 139-181
  31. Putt, M. and D.K. Stoecker. 1989. An experimentally determined carbon: Volume ratio for marine https://doi.org/10.4319/lo.1989.34.6.1097
  32. Rassoulzadegan, F. and M. Tienne. 1981. Grazing rate of the tintinnid Stenosoella ventricosa (Clap. & Lachm.) Jrg. on the spectrum of the naturally occurring particulate matter from a Mediterranean neritic area. Limnol. Oceanogr., 26, 258-270 https://doi.org/10.4319/lo.1981.26.2.0258
  33. Sherr, E.B., B.F. Sherr, and L. Fessenden. 1997. Heterotrophic protists in the central Arctic ocean. Deep-Sea Res. II, 44, 1665-1682 https://doi.org/10.1016/S0967-0645(97)00050-7
  34. Stoecker, D.K., D.E. Gustafson, P.G. Verity, and M.E. Sieracki. 1996. Micro- and meso-prtozooplankton at 140oW in the equatorial Pacific: Heterotrophs and mixotrophs. Aquat. Microb. Ecol., 10, 273-282 https://doi.org/10.3354/ame010273
  35. Strom, S.L. and M.W. Strom. 1996. Microplankton growth, grazing, and community composition in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser., 130, 229-240 https://doi.org/10.3354/meps130229
  36. Tamigneaux, E., M. Mingelbier, B. Klein, and L. Legendre. 1997. Grazing by protists and seasonal changes in the size structure of protozooplankton and phytoplankton in a temperate nearshore environment (western Gulf of St. Lawrence, Canada). Mar. Ecol. Prog. Ser., 146, 231-247 https://doi.org/10.3354/meps146231
  37. Verity, P.G. and C. Langdon. 1984. Relationships between lorica volume, carbon, nitrogen and ATP content of tintinnids in Narragansett Bay. J. Plankton Res., 6, 859-868 https://doi.org/10.1093/plankt/6.5.859
  38. Verity, P.G., D.K. Stoecker, M.E. Sieracki, and J.R. Nelson. 1996. Microzooplankton grazing of primary production at $140^{\circ}$W in the Equatorial Pacific. Deep-Sea Res. II, 43, 1227-1255 https://doi.org/10.1016/0967-0645(96)00021-5
  39. Vors, N., K.R. Buck, F.P. Chavez, W. Eikrem, L.E. Hansen, J.B. Stergaard, and H.A. Thomsen. 1997. Nanoplankton of the equatorial Pacific with emphasis on the heterotrophic protists. Deep-Sea Res. II, 42, 585-602 https://doi.org/10.1016/0967-0645(95)00018-L
  40. Weisse, T., H. Muller, R.M. Pinto-Ceolho, A. Schweizer, D. Springman, and G. Baldringer. 1990. Response of the microbial loop to the phytoplankton bloom in a large prealpine lake. Limnol. Oceanogr., 35, 781-794 https://doi.org/10.4319/lo.1990.35.4.0781
  41. Wylie, J.L. and D.J. Currie. 1991. The relative importance of bacteria and algae as food source for crustacean zooplankton. Limnol. Oceanogr., 36, 708-728 https://doi.org/10.4319/lo.1991.36.4.0708
  42. Yang, E.J., J.K. Choi, and J.H. Hyun. 2004. The distribution and structure of heterotrophic protists communities in the northeast equatorial Pacific Ocean. Mar. Biol., 146, 1-15 https://doi.org/10.1007/s00227-004-1412-9

Cited by

  1. Latitudinal Distribution of Mesozooplankton Community in the Northwestern Pacific Ocean vol.33, pp.spc3, 2011, https://doi.org/10.4217/OPR.2011.33.3.337
  2. Biomass and trophic structure of the plankton community in subtropical and temperate waters of the northwestern Pacific Ocean vol.68, pp.3, 2012, https://doi.org/10.1007/s10872-012-0111-2