DOI QR코드

DOI QR Code

Investigation of Change in Air-Sea CO2 Exchange over the East China Sea using Biogeochemical Ocean Modeling

생지화학모델링을 이용한 동중국해 해양-대기 CO2교환량의 변화 연구

  • Park, Young-Gyu (Climate Change & Coastal Disaster Research Department, KORDI) ;
  • Choi, Sang-Hwa (Ocean Data Management Team, KORDI) ;
  • Yeh, Sang-Wook (Climate Change & Coastal Disaster Research Department, KORDI) ;
  • Lee, Jung-Suk (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Hwang, Jin-Hwan (Dept. Civil Environment System Engineering Dongguk University) ;
  • Kang, Seong-Gil (Marine Safety & Pollution Response Research Department, MOERI, KORDI)
  • 박영규 (한국해양연구원 기후.연안재해연구부) ;
  • 최상화 (한국해양연구원 해양자료팀) ;
  • 예상욱 (한국해양연구원 기후.연안재해연구부) ;
  • 이정석 ((주)네오엔비즈 환경안전연구소) ;
  • 황진환 (동국대학교 사회환경시스템공학과) ;
  • 강성길 (한국해양연구원 해양시스템안전연구소 해양안전.방제기술연구부)
  • Published : 2008.09.30

Abstract

A biogeochemical model was used to estimate air-sea $CO_2$ exchange over the East China Sea. Since fresh water discharge from the Changjiang River and relevant chemistry were not considered in the employed model, we were not able to produce accurate results around the Changjiang River mouth. This factor aside, the model showed that the East China Sea, away from the Changjiang River mouth, takes approximately $1.5{\sim}2\;mole\;m^{-2}yr^{-1}$ of $CO_2$ from the atmosphere. The model also showed that biological factors modify the air-sea $CO_2$ flux by only a few percent when we assumed that biological activity increased two-fold. Therefore, we can argue that the biological effect is not strong enough over this area within the framework of the current phosphate-based biological model. Compared to the preindustrial era, in 1995 the East China Sea absorbed $0.4{\sim}0.8\;mole\;m^{-2}yr^{-1}$ more $CO_2$. If warming of the sea surface is considered, in addition to the increase in atmospheric $CO_2$ concentration, by 2045 the East China Sea would absorb $0.2{\sim}0.4\;mole\;m^{-2}yr^{-1}$ less $CO_2$ compared to the non-warming case.

Keywords

References

  1. Anderson, L. A. and J. L. Sarmiento. 1994. Global ocean phosphate and oxygen simulations. Glob. Biogeochem. Cycles, 9, 621-636 https://doi.org/10.1029/95GB01902
  2. Bozec, Y., H. Thomas, K. Elkalay, and H. J. W. de Baar. 2005. The continental shelf pump for $CO_2$ in the North Sea-evidence from summer observation. Mar. Chem., 93, 131-147 https://doi.org/10.1016/j.marchem.2004.07.006
  3. Cai, W.-J., X. Guo, C.-T. Chen, M. Dai, L. Zhang, W. Zhai, S.E. Lohrenz, and Y. Wang. 2008. A comparative overview of weathering intensity and $HCO_3$ - flux of the world's major rivers with emphasis on the Changjiang, Huanghe, Pearl and Mississippi rivers. Cont. Shelf Res., 23, 1538-1549 https://doi.org/10.1016/j.csr.2007.10.014
  4. Chen, C.-T.A., A. Andreev, K.-R. Kim, and M. Yamamoto. 2004. Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific ocean. J. Oceanogr., 60, 17-44 https://doi.org/10.1023/B:JOCE.0000038316.56018.d4
  5. Gruber, N. and C. D. Keeling. 2001. An improved estimate of the isotopic air-sea disequilibrium of $CO_2$: Implications for the oceanic uptake of anthropogenic $CO_2$. Geophys. Res. Lett., 28(3), 555-558 https://doi.org/10.1029/2000GL011853
  6. IPCC. 2007. Climate Change 2007: The physical science basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M. Tignor, H.L. Miller, Jr., and Z. Chen. Cambridge University Press, Cambridge, U.K. 996 p
  7. Lee, K., R.H. Wanninkhof, T. Takahashi, S. Doney, and R. A. Feely. 1998. Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature, 396, 155-159 https://doi.org/10.1038/24139
  8. Levitus, S. 1982. Climatological atlas of the world ocean. NOAA Prof. Pap. 13. U.S. Government Printing Office, Washington, D.C. 173 p
  9. Liss, P. and L. Merlivert. 1986. Air-sea exchange rates: Introduction and synthesis. p. 113-127. In: The role of air-sea exchange in geochemical cycling. NATO ASI Series C., Vol. 185, ed. by P. Buat-Menard. D. Reidel Publishing, Dordrecht
  10. Najjar, R.G., J.L. Sarmiento, and J.R. Toggweiler. 1992. Downward transport and fate of organic matter in the ocean: Simulation with a general circulation model. Glob. Biogeochem. Cycles, 6, 45-76 https://doi.org/10.1029/91GB02718
  11. Orr, J.C., E. Maier-Reimer, U. Mikolajewicz, P. Monfray, J.L. Sarmiento, J.R. Toggweiler, N.K. Taylor, J. Palmer, N. Gruber, C.L. Sabine, C. Le Quéré, R.M. Key, and J. Boutin. 2001. Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Glob. Biogeochem. Cycles, 15(1), 43-60 https://doi.org/10.1029/2000GB001273
  12. Pacanowski, R.C.P. and S.M. Griffies. 1999. MOM3.0 Manual. Available from WWW: [cited 2008-07-10]
  13. Peng, T.-H., J.-J. Hung, R. Wanninkhof, and F. J. Millero. 1999. Carbon budget in the East China Sea in spring. Tellus, 51B, 531-540
  14. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T-H. Peng, A. Kozyr, T. Ono, and A.F. Rios. 2004. The oceanic sink for anthropogenic $CO_2$. Science, 305(5682), 367-371 https://doi.org/10.1126/science.1097403
  15. Sarmiento, J.L. and N. Gruber. 2002. Sinks for anthropogenic carbon. Physics Today, 55(8), 30-36 https://doi.org/10.1063/1.1510279
  16. Shim, J., D. Kim, Y.C. Kang, J.H. Lee, S.-T. Jang, and C.-H. Kim. 2007. Seasonal variations in p$CO_2$ and its controlling factors in surface seawater of the northern East China Sea. Cont. Shelf Res., 27, 2623-2636 https://doi.org/10.1016/j.csr.2007.07.005
  17. Siegenthaler, U. and J. Sarmiento. 1993. Atmospheric carbon dioxide and the ocean. Nature, 365, 119-125 https://doi.org/10.1038/365119a0
  18. Sverdrup, H.U., M.W. Johnson, and R.H. Fleming. 1942. The oceans: Their physics, chemistry and general biology. Prentice-Hall, Englewood Cliffs, New York. 1087 p
  19. Takahashi, T., J. Olafsson, J. Goddard, D. Chipman, and S. Sutherland. 1993. Seasonal variations of $CO_2$ and nutrients in the high-latitude surface oceans: A comparative study. Glob. Biogeochem. Cycles, 7(4), 843-878 https://doi.org/10.1029/93GB02263
  20. Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R.A. Feely, C. Sabine, J. Olafsson, and Y. Nojiri. 2002. Global sea-air $CO_2$ flux based on climatological surface ocean p$CO_2$, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 1601-1622 https://doi.org/10.1016/S0967-0645(02)00003-6
  21. Thomas, H., England, M.H., and V. Ittekkot. 2001. An offline 3D model of anthropogenic $CO_2$ uptake by the oceans. Geophys. Res. Lett., 28(3), 547-550 https://doi.org/10.1029/2000GL011642
  22. Tsunogai, S., S. Watanabe, J. Nakamura, T. Ono, and T. Sato. 1997. A Preliminary Study of Carbon System in the East China Sea. J. Oceanogr., 53, 9-17 https://doi.org/10.1007/BF02700744
  23. Tsunogai, S., S. Watanabe, and T. Sato. 1999. Is there a 'continental shelf pump' for the absorption of atmospheric $CO_2$? Tellus, 51B, 701-712
  24. Walsh, J.J. 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350, 53-55 https://doi.org/10.1038/350053a0
  25. Wang, S.-L., C.-T.A. Chen, C.-H. Hong, and C.-S. Chung. 2000. Carbon dioxide and related parameters in the East China Sea. Cont. Shelf Res., 20, 525-544 https://doi.org/10.1016/S0278-4343(99)00084-9
  26. Weiss, R. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem., 2, 203-205 https://doi.org/10.1016/0304-4203(74)90015-2
  27. Wollast, R. 1998. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. p. 213-252. In: The Sea, ed. by K.H. Brink and A.R. Robinson. John Wiley & Sons, New York