DOI QR코드

DOI QR Code

Preparation of Nd2Fe14B Single Domain Particles from Nd-Fe-B Alloy Ingot Using a Combination of HDDR and Mechanical Milling

  • Lee, J.I. (School of Materials Science and Engineering, Pukyong National University) ;
  • Kwon, H.W. (School of Materials Science and Engineering, Pukyong National University) ;
  • Kang, Y.S. (Department of Chemistry, Sogang University)
  • Published : 2008.09.30

Abstract

This study examined the feasibility of the combining HDDR-process (hydrogenation, disproportionation, desorption and recombination) with mechanical milling to prepare single domain $Nd_2Fe_{14}B$ particles from a Nd-Fe-B alloy ingot. The $Nd_{15}Fe_{77}B_8$ alloy was HDDR-treated and then subjected to a roller-milling. In the HDDR-treated $Nd_{15}Fe_{77}B_8$ alloy, very small $Nd_2Fe_{14}B$ grains comparable to their critical single domain size(0.3 ${\mu}m$) were observed. These fine individual grains were separated successfully along the grain boundaries by a roller-milling. The separated $Nd_2Fe_{14}B$ grains were found to be single domain particles. These results suggest that single domain particles of the $Nd_2Fe_{14}B$ phase can be prepared from a Nd-Fe-B ingot alloy by combining a HDDR-process with mechanical milling.

Keywords

References

  1. J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, J. Appl. Phys. 55, 2078 (1984) https://doi.org/10.1063/1.333571
  2. M. Sagawa, S. Fujimura, M. Togawa, H. Yamamoto, and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984) https://doi.org/10.1063/1.333572
  3. S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, and H. Yamauchi, J. Appl. Phys. 59, 873 (1986) https://doi.org/10.1063/1.336611
  4. R. Grossinger, R. Krewenka, X. K. Sun, R. Eibler, H. R. Kirkmayr, and K. H. J. Buschow, Less-Common Met. 124, 165 (1986) https://doi.org/10.1016/0022-5088(86)90488-1
  5. L. Schultz, K. Schnitzke, and J. Wecker, J. Magn. Magn. Mater. 83, 254 (1990) https://doi.org/10.1016/0304-8853(90)90506-L
  6. V. Neu, U. Klement, R. Schafer, and L. Schultz, Mater. Lett. 26, 167 (1996) https://doi.org/10.1016/0167-577X(95)00219-7
  7. W. F. Miao, J. Ding. P. G. McCormick, and R. Street, J. Appl. Phys. 79, 2079 (1996) https://doi.org/10.1063/1.361065
  8. H. W. Kwon and C. J. Yang, J. Magnetics 7(4), 143 (2002) https://doi.org/10.4283/JMAG.2002.7.4.143
  9. J. H. Kim and H. W. Kwon, J. Magnetics 10(4), 152 (2005) https://doi.org/10.4283/JMAG.2005.10.4.152
  10. H. W. Kwon, IEEE Trans. Mag. 39, 2977 (2003) https://doi.org/10.1109/TMAG.2003.816712
  11. T. Takeshita and R. Nakayama, Proc. 10th International Workshop on RE Magnets and Their Applications, Kyoto, Japan, Vol. I. 551 (1989)
  12. P. J. McGuiness, X. J. Zhang, X. J. Yin, and I. R. Harris, Less-Common Met. 158, 379 (1990)
  13. J. D. Livingston, J. Appl. Phys. 57, 4137 (1985) https://doi.org/10.1063/1.334644

Cited by

  1. Novel NdCo5 nanoflakes and nanoparticles produced by surfactant-assisted high-energy ball milling vol.14, pp.2, 2012, https://doi.org/10.1007/s11051-012-0719-6
  2. Residual Hydrogen in Nd-Fe-B HDDR Powder and Its Effect on Coercivity of Hot-Pressed Compact vol.49, pp.7, 2013, https://doi.org/10.1109/TMAG.2013.2243118
  3. Magnetic Evolution of PrCo5 Nanoflakes Obtained by Surfactant-Assisted Ball Milling vol.27, pp.12, 2014, https://doi.org/10.1007/s10948-014-2772-0
  4. B nanoflakes and nanoparticles for the development of high energy nanocomposite magnets vol.21, pp.29, 2010, https://doi.org/10.1088/0957-4484/21/29/295705
  5. B particles vol.6, pp.5, 2016, https://doi.org/10.1063/1.4944771
  6. Rare earth–cobalt hard magnetic nanoparticles and nanoflakes by high-energy milling vol.22, pp.16, 2010, https://doi.org/10.1088/0953-8984/22/16/164213