DOI QR코드

DOI QR Code

Temperature Dependent Cation Distribution in Tb2Bi1Ga1Fe4O12

  • Published : 2008.09.30

Abstract

In this study, heavy rare earth garnet $Tb_2Bi_1Ga_1Fe_4O_{12}$ powders were fabricated by a sol-gel and vacuum annealing process. The crystal structure was found to be single-phase garnet with a space group of Ia3d. The lattice constant $a_0$ was determined to be 12.465 ${\AA}$. From the analysis of the vibrating sample magnetometer (VSM) hysteresis loop at room temperature, the saturation magnetization and coercivity of the sample are 7.64 emu/g and 229 Oe, respectively. The N$\acute{e}$el temperature($T_N$) was determined to be 525 K. The M$\ddot{o}$ssbauer spectrum of $Tb_2Bi_1Ga_1Fe_4O_{12}$ at room temperature consists of 2 sets of 6 Lorentzians, which is the pattern of single-phase garnet. From the results of the M$\ddot{o}$ssbauer spectrum at room temperature, the absorption area ratios of Fe ions on 24d and 16a sites are 74.7% and 25.3%(approximately 3:1), respectively. These results show that all of the non-magnetic Ga atoms occupy the 16a site by a vacuum annealing process. Absorption area ratios of Fe ions are dependent not only on a sintering condition but also on the temperature of the sample. It can then be interpreted that the Ga ion distribution is dependent on the temperature of the sample. The M$\ddot{o}$ssbauer measurement was carried out in order to investigate the atomic migration in $Tb_2Bi_1Ga_1Fe_4O_{12}$.

Keywords

References

  1. F. Sayetat, J. Magn. Magn. Mater. 58, 334 (1986) https://doi.org/10.1016/0304-8853(86)90456-7
  2. M. Guillot, H. L. Gall, J. M. Desvignes, and M. Artinian, IEEE Trans. Magn. 30, 4419 (1994) https://doi.org/10.1109/20.334107
  3. G. B. Scott, D. E. Lacklison, and J. L. Page, J. Phys. C 8, 519 (1975) https://doi.org/10.1088/0022-3719/8/4/020
  4. P. Hansen, K. Witter, and W. Tolkdorf, Phys. Rev. B 27, 4375 (1983) https://doi.org/10.1103/PhysRevB.27.4375
  5. I. J. Park and C. S. Kim, J. Appl. Phys. 101, 09M512 (2007)
  6. J. B. Yang, W. B. Yelon, W. J. James, S. Cai, D. Eckert, A. Handstein, K. H. Müller, and Y. C. Yang, Phys. Rev. B 65, 064444 (2002) https://doi.org/10.1103/PhysRevB.65.064444
  7. Z. C. Xu, Appl. Phys. Lett. 89, 032501 (2006) https://doi.org/10.1063/1.2221891
  8. L. Wilkens, D. Trager, H. Dotsch, A. M. Alexeev, A. F. Popkov, and V. I. Korneev, J. Appl. Phys. 93, 2839 (2003) https://doi.org/10.1063/1.1544646
  9. R. Wolfe, J. Hegarty, J. F. Dillon, Jr, L. C. Luther, G. K. Celler, and L. E. Trimble, IEEE Tran. Magn. MAG-21, 1647 (1985)
  10. S. I. Park, K. R. Choi, T. Kouh, and C. S. Kim, J. Magnetics 12(4), 137 (2007) https://doi.org/10.4283/JMAG.2007.12.4.137
  11. H. N. Ok and Y. K. Kim, Phys. Rev. B 36, 5120 (1987) https://doi.org/10.1103/PhysRevB.36.5120
  12. W. C. Kim, S. J. Kim, S. W. Lee, S. H. Ji, and C. S. Kim, IEEE Trans. Magn. 36(5), 3399 (2000) https://doi.org/10.1109/20.908839
  13. S. Y. An, S. W. Lee, S. J. Kim, and C. S. Kim, Scripta mater. 44, 1457 (2001) https://doi.org/10.1016/S1359-6462(01)00847-8