SUPRA FUZZY CONVERGENCE OF FUZZY FILTERS

A. A. RAMADAN AND A. A. ABD EL-LATIF

ABSTRACT. We introduce and study the notions of supra fuzzy convergence of fuzzy filters, $s\gamma$ -fuzzy open (closed) sets, $s\gamma(s\gamma^*)$ -fuzzy continuous and $s\gamma$ -fuzzy open mapping. Also, we investigate some of fundamental properties of these notions.

1. Introduction and preliminaries

Šostak [14], introduce the fundamental concept of a fuzzy topological structure as an extension of both crisp topology and Chang's fuzzy topology [1], in the sense that not only the object were fuzzified, but also the axiomatics. In [15, 16] Šostak gave some rules and showed how such an extension can be realized. Chattopdhyay et al. [2, 3] have redefined the similar concept. In [11] Ramadan gave a similar definition namely "Smooth fuzzy topology" for lattice L = [0, 1], it has been developed in many direction [4, 6, 7, 9]. Ramadan [12], introduce the concept of smooth filter structures in the framework of smooth topology and he establish some of their properties. Also, Ramadan et al. [13] introduce the concept of convergence of smooth fuzzy filter in smooth fuzzy topological spaces. In this paper we introduce and study the notions of supra fuzzy convergence of fuzzy filters, $s\gamma$ -fuzzy open (closed) sets, $s\gamma(s\gamma^*)$ -fuzzy continuous and $s\gamma$ -fuzzy open mapping. Also, we investigate some of fundamental properties of these notions.

Throughout this paper, let X be a nonempty set, I = [0, 1], $I_0 = (0, 1]$ and I^X denote the set of all fuzzy subsets of X. A fuzzy point x_t for $t \in I_0$ is an element of I^X such that, for $y \in X$,

$$x_t(y) = \begin{cases} t & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point $x_t \in \lambda$ if and only if $t \leq \lambda(x)$ [10].

Received May 6, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 54A40.

Key words and phrases. fuzzy topological space, supra fuzzy topology, fuzzy filter, supra fuzzy convergence, $s\gamma$ -fuzzy continuous.

Definition 1.1 ([11]). A mapping $\tau: I^X \longrightarrow I$ is called fuzzy topology on X if it satisfies the following conditions:

- (O1) $\tau(0) = \tau(\underline{1}) = 1$.
- (O2) $\tau(\mu_1 \wedge \mu_2) \geq \tau(\mu_1) \wedge \tau(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$.
- (O3) $\tau(\bigvee_{i\in J}\mu_i) \ge \bigwedge_{i\in J}\tau(\mu_i)$ for any $\{\mu_i: i\in J\}\subseteq I^X$.

The pair (X, τ) is called fuzzy topological space (briefly, fts).

Theorem 1.1 ([3]). Let (X, τ) be a fts. Then, for each $\lambda \in I^X$ and $r \in I_0$ we define an operator $C_\tau : I^X \times I_0 \longrightarrow I^X$ as follows:

$$C_{\tau}(\lambda, r) = \bigwedge \{ \mu : \lambda \le \mu, \tau(\underline{1} - \mu) \ge r \}.$$

For each $\lambda, \mu \in I^X$ and $r, s \in I_0$ the operator C_τ satisfies the following conditions:

- (i) $C_{\tau}(\underline{0}, r) = \underline{0}$.
- (ii) $\lambda \leq C_{\tau}(\lambda, r)$.
- (iii) $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r) = C_{\tau}(\lambda \vee \mu, r).$
- (iv) $C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, s)$ if $r \leq s$.
- (v) $C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r)$.

Theorem 1.2 ([8]). Let (X, τ) be a fts. Then, for each $\lambda \in I^X$ and $r \in I_0$ we define an operator $I_\tau : I^X \times I_0 \longrightarrow I^X$ as follows:

$$I_{\tau}(\lambda, r) = \bigvee \{\mu : \mu \le \lambda, \tau(\mu) \ge r\}.$$

For each $\lambda, \mu \in I^X$ and $r, s \in I_0$ the operator I_τ satisfies the following conditions:

- (i) $I_{\tau}(\underline{1} \lambda, r) = \underline{1} C_{\tau}(\lambda, r)$ and $C_{\tau}(\underline{1} \lambda, r) = \underline{1} I_{\tau}(\lambda, r)$.
- (ii) $I_{\tau}(\underline{1},r) = \underline{1}$.
- (iii) $I_{\tau}(\lambda, r) \leq \lambda$.
- (iv) $I_{\tau}(\lambda, r) \wedge I_{\tau}(\mu, r) = I_{\tau}(\lambda \wedge \mu, r)$.
- (v) $I_{\tau}(\lambda, r) \geq I_{\tau}(\lambda, s)$ if $r \leq s$.
- (vi) $I_{\tau}(I_{\tau}(\lambda, r), r) = I_{\tau}(\lambda, r)$.

Definition 1.2 ([5]). A mapping $\tau: I^X \longrightarrow I$ is called supra fuzzy topology on X if it satisfies the following conditions:

- (S1) $\tau(\underline{0}) = \tau(\underline{1}) = 1$.
- (S2) $\tau(\bigvee_{i\in J} \mu_i) \ge \bigwedge_{i\in J} \tau(\mu_i)$ for any $\{\mu_i : i\in J\} \subseteq I^X$.

The pair (X, τ) is called supra fuzzy topological space (briefly, sfts).

Let τ^* be supra fuzzy topology. Then τ^* is called the supra fuzzy topology associated with a fuzzy topology τ if $\tau \leq \tau^*$.

Definition 1.3 ([11]). Let (X, τ_1) and (Y, τ_2) be fts's and let τ_1^* and τ_2^* be associated supra fuzzy topologies with τ_1 and τ_2 respectively. Then the mapping $f: X \to Y$ is called fuzzy continuous (resp. supra fuzzy continuous) if $\tau_1(f^{-1}(\mu)) \ge \tau_2(\mu)$ (resp. $\tau_1^*(f^{-1}(\mu)) \ge \tau_2^*(\mu)$) for each $\mu \in I^Y$.

Definition 1.4 ([12]). A mapping $\mathcal{F}: I^X \longrightarrow I$ is called fuzzy filter on X if it satisfies the following conditions:

(F1) $\mathcal{F}(0) = 0$.

(F2) $\mathcal{F}(\lambda \wedge \mu) \geq \mathcal{F}(\lambda) \wedge \mathcal{F}(\mu)$ for each $\lambda, \mu \in I^X$.

(F3) If $\lambda \leq \mu$, $\mathcal{F}(\lambda) \leq \mathcal{F}(\mu)$.

A fuzzy filter is said to be proper if $\mathcal{F}(\tilde{1}) = 1$.

If \mathcal{F}_1 and \mathcal{F}_2 are fuzzy filters on X, we say \mathcal{F}_1 is finer than \mathcal{F}_2 (or \mathcal{F}_2 is coarser than \mathcal{F}_1), denoted by $\mathcal{F}_2 \leq \mathcal{F}_1$, if and only if $\mathcal{F}_2(\lambda) \leq \mathcal{F}_1(\lambda)$ for all $\lambda \in I^X$.

Theorem 1.3 ([13]). Let \mathcal{F} and \mathcal{G} be proper fuzzy filters on X satisfying the following condition:

(C) If $\lambda_1, \lambda_2 \in I^X$ with $\mathcal{F}(\lambda_1) > 0$ and $\mathcal{G}(\lambda_1) > 0$, we have $\lambda_1 \wedge \lambda_2 \neq \underline{0}$.

Define a mapping $\mathcal{F} \vee \mathcal{G}: I^X \to I$ as

$$\mathcal{F} \vee \mathcal{G}(\lambda) = \bigvee \{ \mathcal{F}(\lambda_1) \wedge \mathcal{G}(\lambda_2) : \lambda = \lambda_1 \wedge \lambda_2 \}.$$

Then $\mathcal{F} \vee \mathcal{G}$ is the coarsest proper fuzzy filter which is finer than \mathcal{F} and \mathcal{G} .

Theorem 1.4 ([13]). Let a mapping $f: X \to Y$ and \mathcal{F} a fuzzy filter on X. We define a mapping $f(\mathcal{F}): I^Y \to I$ as:

$$f(\mathcal{F})(\mu) = \mathcal{F}(f^{-1}(\mu)).$$

Then $f(\mathcal{F})$ is a fuzzy filter on Y.

2. Supra fuzzy filter convergence

Theorem 2.1. Let (X,τ) be sfts and $x_t \in Pt(X)$. Define $S_{x_t}: I^X \longrightarrow I$ by

$$S_{x_t}(\lambda) = \begin{cases} \bigvee \{\tau(\nu_i) : \wedge_{i=1}^n \nu_i \leq \lambda\}, & \text{if } x_t \in \nu_i \\ 0, & \text{otherwise.} \end{cases}$$

Then S_{x_t} is a fuzzy filter on X, we call it the supra neighborhood fuzzy filter at x_t .

Proof. (F1) is easy.

(F2) Suppose that there exist $\lambda_1, \lambda_2 \in I^X$ and $r \in I_0$ such that

$$S_{x_t}(\lambda_1 \wedge \lambda_2) < r \le S_{x_t}(\lambda_1) \wedge S_{x_t}(\lambda_2).$$

Since $S_{x_t}(\lambda_1) \geq r$ and $S_{x_t}(\lambda_2) \geq r$ and by definition of S_{x_t} there exist $\nu_i, \mu_j \in I^X$, i = 1, 2, ..., n, j = 1, 2, ..., m such that

$$\wedge_{i=1}^n \nu_i \leq \lambda_1, \quad x_t \in \nu_i, \quad \tau(\nu_i) \geq r, \quad i = 1, 2, \dots, n$$

and

$$\wedge_{j=1}^{m} \mu_j \leq \lambda_2, \quad x_t \in \mu_j, \quad \tau(\mu_j) \geq r, \quad j = 1, 2, \dots, m.$$

Then, $\wedge_{i=1}^n \nu_i \wedge \wedge_{i=1}^m \mu_j \leq \lambda_1 \wedge \lambda_2$ and since for each $i = 1, 2, ..., n, j = 1, 2, ..., m, x_t \in \nu_i, x_t \in \mu_j, \tau(\nu_i) \geq r$ and $\tau(\mu_j) \geq r$ we have $S_{x_t}(\lambda_1 \wedge \lambda_2) \geq r$.

It is a contradiction. Hence, $S_{x_t}(\lambda_1 \wedge \lambda_2) \geq S_{x_t}(\lambda_1) \wedge S_{x_t}(\lambda_2)$ for each $\lambda_1, \lambda_2 \in I^X$.

(F3) Let $\lambda_1, \lambda_2 \in I^X$ such that $\lambda_1 \leq \lambda_2$. Suppose that there exists $r \in I_0$ such that

$$S_{x_t}(\lambda_1) \ge r > S_{x_t}(\lambda_2).$$

Since $S_{x_t}(\lambda_1) \geq r$, and by definition of S_{x_t} , there exist $\nu_i \in I^X$, i = 1, 2, ..., n such that

$$\wedge_{i=1}^n \nu_i < \lambda_1 < \lambda_2, \quad x_t \in \nu_i, \quad \tau(\nu_i) \ge r, \quad i = 1, 2, \dots, n.$$

Then
$$S_{x_t}(\lambda_2) \geq r$$
. It is a contradiction. Hence, $S_{x_t}(\lambda_1) \leq S_{x_t}(\lambda_2)$.

Definition 2.1. Let (X, τ) be a sfts and let \mathcal{F} be a fuzzy filter on X. We say that \mathcal{F} is supra fuzzy converges to $x_t \in Pt(X)$ if \mathcal{F} is finer than the supra neighborhood fuzzy filter S_{x_t} .

Definition 2.2. Let (X, τ) be a sfts and let \mathcal{F} be a fuzzy filter on X. For, $r \in I_0$ we say that $x_t \in Pt(X)$ is r-supra fuzzy cluster point of \mathcal{F} if for every $\lambda, \mu \in I^X$ with $x_t \in \lambda, \tau(\lambda) \geq r$ and $\mathcal{F}(\mu) \geq r$, we have $\lambda \wedge \mu \neq \underline{0}$.

Definition 2.3. Let (X, τ) be a sfts and let \mathcal{F} be a fuzzy filter on X. For, $r \in I_0$ we say that $x_t \in Pt(X)$ is r-supra fuzzy strong cluster point of \mathcal{F} if for every $\lambda, \mu \in I^X$ with $S_{x_t}(\lambda) \geq r$ and $\mathcal{F}(\mu) \geq r$, we have $\lambda \wedge \mu \neq \underline{0}$.

Remark 2.1. Every r-supra fuzzy strong cluster point of a fuzzy filter is also r-supra fuzzy cluster point but the converse is not true in general as the following example shows.

Example 2.1. Let $X = \{x, y, z\}$ be a set. Define $\lambda_1, \lambda_2 \in I^X$ as follows:

$$\lambda_1(x) = 0.8$$
 $\lambda_1(y) = 0.5$ $\lambda_1(z) = 0.0$

$$\lambda_2(x) = 0.8$$
 $\lambda_2(y) = 0.0$ $\lambda_2(z) = 0.5.$

We define a supra fuzzy topology $\tau:I^X\to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{0}, \underline{1} \\ 0.5, & \text{if} \quad \lambda = \lambda_1 \vee \lambda_2 \\ 0.3, & \text{if} \quad \lambda \in \{\lambda_1, \lambda_2\} \\ 0, & \text{otherwise.} \end{cases}$$

Let t < 0.8 and 0 < r < 0.3. Then

$$S_{x_t}(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{1} \\ 0.5, & \text{if} \quad \lambda_1 \vee \lambda_2 \leq \lambda < \underline{1} \\ 0.3, & \text{if} \quad \lambda_1 \leq \lambda < \lambda_1 \vee \lambda_2 & \text{or} \quad \lambda_2 \leq \lambda < \lambda_1 \vee \lambda_2 \\ 0.3, & \text{if} \quad \lambda_1 \wedge \lambda_2 \leq \lambda < \lambda_1 & \text{or} \quad \lambda_1 \wedge \lambda_2 \leq \lambda < \lambda_2 \\ 0, & \text{otherwise.} \end{cases}$$

Define a fuzzy filter $\mathcal{F}: I^X \to I$ as follows:

$$\mathcal{F}(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{1} \\ 0.6, & \text{if} \quad \chi_{\{y,z\}} \le \lambda < \underline{1} \\ 0, & \text{otherwise.} \end{cases}$$

Then x_t is r-supra fuzzy cluster point of a fuzzy filter \mathcal{F} but it is not r-supra fuzzy strong cluster point of \mathcal{F} . Since, $S_{x_t}(\lambda_1 \wedge \lambda_2) = 0.3 > r$ and $\mathcal{F}(\chi_{\{y,z\}}) = 0.6 > r$ but $(\lambda_1 \wedge \lambda_2) \wedge \chi_{\{y,z\}} = \underline{0}$.

Theorem 2.2. Let (X, τ) be a sfts and let \mathcal{F} be a fuzzy filter on X. Then \mathcal{F} has $x_t \in Pt(X)$ as r-supra fuzzy strong cluster point if and only if there is a finer fuzzy filter \mathcal{G} than \mathcal{F} such that \mathcal{G} supra fuzzy converges to x_t .

Proof. If x_t is r-supra fuzzy strong cluster point of \mathcal{F} , then for each $\lambda, \mu \in I^X$ with $S_{x_t}(\lambda) \geq r$ and $\mathcal{F}(\mu) \geq r$, we have $\lambda \wedge \mu \neq \underline{0}$. From Theorem 1.3, we can define

$$\mathcal{G} = S_{r_*} \vee \mathcal{F}$$

such that $S_{x_t} \leq \mathcal{G}$ and $\mathcal{F} \leq \mathcal{G}$. Thus \mathcal{G} is supra fuzzy converges to x_t .

Conversely, if $S_{x_t} \leq \mathcal{G}$ and $\mathcal{F} \leq \mathcal{G}$, then for each $\lambda, \mu \in I^X$ and $r \in I_0$ with $S_{x_t}(\lambda) \geq r$ and $\mathcal{F}(\mu) \geq r$, we have $\mathcal{G}(\lambda) \geq r$ and $\mathcal{G}(\mu) \geq r$. Since \mathcal{G} is a fuzzy filter, $\mathcal{G}(\lambda \wedge \mu) \geq \mathcal{G}(\lambda) \wedge \mathcal{G}(\mu) \geq r$, then $\lambda \wedge \mu \neq \underline{0}$. Thus x_t is r-supra fuzzy strong cluster point of \mathcal{F} .

Theorem 2.3. Let (X, τ_1) and (Y, τ_2) be sfts's and let $f: (X, \tau_1) \to (Y, \tau_2)$ be a supra fuzzy continuous mapping. Then we have the following statements:

- (i) $S_{f(x)_t}(\mu) \leq S_{x_t}(f^{-1}(\mu))$ for each $\mu \in I^Y$.
- (ii) For every fuzzy filter \mathcal{F} on X and $x_t \in Pt(X)$, if \mathcal{F} supra fuzzy converges to x_t , then $f(\mathcal{F})$ supra fuzzy converges to $f(x)_t$ in Y.

Proof. (i) Suppose that there exist $\mu \in I^Y$ and $r \in I_0$ such that

$$S_{f(x)_t}(\mu) \ge r > S_{x_t}(f^{-1}(\mu)).$$

Since $S_{f(x)_t}(\mu) \geq r$, there exist $\nu_i \in I^Y$ with $f(x)_t \in \nu_i$, $\tau_2(\nu_i) \geq r$, $i = 1, 2, \ldots, n$ such that $\bigwedge_{i=1}^n \nu_i \leq \mu$. Then,

$$f^{-1}(\wedge_{i=1}^n \nu_i) = \wedge_{i=1}^n f^{-1}(\nu_i) \le f^{-1}(\mu)$$
 and $x_t \in f^{-1}(\nu_i), i = 1, 2, \dots, n$.

Also, $\tau_1(f^{-1}(\nu_i)) \geq \tau_2(\nu_i) \geq r$, hence $S_{x_t}(f^{-1}(\mu)) \geq r$. It is a contradiction. Thus $S_{f(x)_t}(\mu) \leq S_{x_t}(f^{-1}(\mu))$ for each $\mu \in I^Y$.

(ii) Let \mathcal{F} be a fuzzy filter on X and $x_t \in Pt(X)$ such that \mathcal{F} is supra fuzzy converges to x_t . Then for each $\mu \in I^Y$ we have

$$S_{x_t}(f^{-1}(\mu)) \le \mathcal{F}(f^{-1}(\mu)).$$

Since f is supra fuzzy continuous and by using (i) we have

$$S_{f(x)_t}(\mu) \le S_{x_t}(f^{-1}(\mu)) \le \mathcal{F}(f^{-1}(\mu)) = f(\mathcal{F})(\mu).$$

Then, $S_{f(x)_t} \leq f(\mathcal{F})$. Hence $f(\mathcal{F})$ is supra fuzzy converges to $f(x)_t$.

3. r- $s\gamma$ -fuzzy open sets and r- $s\gamma$ -fuzzy open sets

Definition 3.1. Let (X, τ) be sfts, $\nu \in I^X$ and $r \in I_0$. Then ν is called:

- (i) r-s γ -fuzzy open (briefly r-s γ fo) set if either $\nu=\underline{0}$ or $S_{x_t}(\nu)\geq r$ for all $x_t\in \nu$.
 - (ii) r- $s\gamma$ -fuzzy closed (briefly r- $s\gamma$ fc) set if $\underline{1} \nu$ is r- $s\gamma$ fo set.

Remark 3.1. Let (X, τ) be sfts and $r \in I_0$. Then for every $\lambda \in I^X$ with $\tau(\lambda) \geq r$, λ is r- $s\gamma$ fo but the converse is not true in general as the following example shows.

Example 3.1. Let $X = \{x, y, z\}$ be a set. Define $\lambda_1, \lambda_2, \mu \in I^X$ as follows:

$$\lambda_1(x) = 1.0$$
 $\lambda_1(y) = 0.6$ $\lambda_1(z) = 1.0$ $\lambda_2(x) = 0.6$ $\lambda_2(y) = 1.0$ $\lambda_2(z) = 0.0$ $\mu(x) = 1.0$ $\mu(y) = 0.9$ $\mu(z) = 1.0$.

We define a supra fuzzy topology $\tau: I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{0}, \underline{1} \\ 0.6, & \text{if} \quad \lambda = \lambda_1 \\ 0.4, & \text{if} \quad \lambda = \lambda_2 \\ 0, & \text{otherwise.} \end{cases}$$

Let $0 < r \le 0.4$. If t > 0.6 we have

$$S_{x_t}(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{1} \\ 0.6, & \text{if } \lambda_1 \le \lambda < \underline{1} \\ 0, & \text{otherwise.} \end{cases}$$

$$S_{y_t}(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{1} \\ 0.4, & \text{if } \lambda_2 \le \lambda < \underline{1} \\ 0, & \text{otherwise.} \end{cases}$$

$$S_{z_t}(\lambda) = \begin{cases} 1, & \text{if } \lambda = \underline{1} \\ 0.6, & \text{if } \lambda_1 \le \lambda < \underline{1} \\ 0, & \text{otherwise.} \end{cases}$$

If t < 0.6 we have

$$S_{x_t}(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{1} \\ 0.6, & \text{if} \quad \lambda_1 \leq \lambda < \underline{1} \\ 0.4, & \text{if} \quad \lambda_2 \leq \lambda < \underline{1} \\ 0.6, & \text{if} \quad \lambda_1 \wedge \lambda_2 \leq \lambda < \lambda_1 \quad \text{or} \quad \lambda_1 \wedge \lambda_2 \leq \lambda < \lambda_2 \\ 0, & \text{otherwise.} \end{cases}$$

$$S_{y_t}(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{1} \\ 0.6, & \text{if} \quad \lambda_1 \leq \lambda < \underline{1} \\ 0.4, & \text{if} \quad \lambda_2 \leq \lambda < \underline{1} \\ 0.6, & \text{if} \quad \lambda_1 \wedge \lambda_2 \leq \lambda < \lambda_1 & \text{or} \quad \lambda_1 \wedge \lambda_2 \leq \lambda < \lambda_2 \\ 0, & \text{otherwise.} \end{cases}$$

$$S_{z_{\ell}}(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{1} \\ 0.6, & \text{if} \quad \lambda_{1} \leq \lambda < \underline{1} \\ 0, & \text{otherwise.} \end{cases}$$

Then, μ is r- $s\gamma$ fo set of X but $\tau(\mu) = 0.0 \ngeq r$.

Theorem 3.1. Let (X, τ) be a sfts and $r \in I_0$. Then,

- (i) Any union of r-s γ fo sets is r-s γ fo set.
- (ii) Any intersection of r-s γfc sets is r-s γfc set.

Proof. (i) Let $\{\lambda_i : i \in J\}$ be a family of r-s γ fo sets. Then for each $i \in J$ we have $S_{x_t}(\lambda_i) \geq r$ for each $x_t \in \lambda_i$. So, there exist $\nu_{ik} \in I^X$ with $x_t \in \nu_{ik}$ and $\tau(\nu_{ik}) \geq r$, $k = 1, 2, \ldots, n_i$ such that $\bigwedge_{k=1}^{n_i} \nu_{ik} \leq \lambda_i$ then

$$\bigvee_{i \in J} (\bigwedge_{k=1}^{n_i} \nu_{ik}) \le \bigvee_{i \in J} \lambda_i.$$

Thus

$$\bigwedge_{k=1}^{n_i} (\bigvee_{i \in J} \nu_{ik}) \le \bigvee_{i \in J} \lambda_i.$$

Let $\nu_{i_0k} = \bigvee_{i \in J} \nu_{ik}$. Then

$$\tau(\nu_{i_0k}) = \tau(\bigvee_{i \in J} \nu_{ik}) \ge \bigwedge_{i \in J} \tau(\nu_{ik}) \ge r.$$

Since $x_t \in \nu_{i_0 k}$ for each $k = 1, 2, ..., n_i$ and $\bigwedge_{k=1}^{n_i} \nu_{i_0 k} \leq \bigvee_{i \in J} \lambda_i$,

$$S_{x_t}(\bigvee_{i \in J} \lambda_i) \geq r \quad \text{for each} \quad x_t \in \bigvee_{i \in J} \lambda_i.$$

Thus $\bigvee_{i \in J} \lambda_i$ is r- $s\gamma$ fo set on X.

(ii) It is easy from(i) and the fact,
$$\bigvee_{i \in J} (\underline{1} - \lambda_i) = \underline{1} - \bigwedge_{i \in J} \lambda_i$$
.

Definition 3.2. Let (X, τ) be a sfts, $\lambda \in I^X$ and $r \in I_0$. Then,

(i) The r-s γ -interior of λ denoted by $sI_{\gamma}(\lambda,r)$ is defined by

$$sI_{\gamma}(\lambda, r) = \bigvee \{ \mu \in I^X : \mu \le \lambda, \mu \text{ is } r\text{-}s\gamma \text{fo} \}.$$

(ii) The r-s γ -closure of λ denoted by $sC_{\gamma}(\lambda,r)$ is defined by

$$sC_{\gamma}(\lambda, r) = \bigwedge \{ \mu \in I^X : \mu \ge \lambda, \mu \text{ is } r\text{-}s\gamma \text{fc} \}.$$

Theorem 3.2. Let (X, τ) be a sfts, $\lambda \in I^X$ and $r \in I_0$. Then,

$$sI_{\gamma}(\lambda,r) = \bigvee \{x_t \in Pt(X) : S_{x_t}(\lambda) \ge r\}.$$

Proof. For each $x_t \in sI_{\gamma}(\lambda, r)$, there exists r- $s\gamma$ fo set $\mu \in I^X$ such that $x_t \in \mu$ and $\mu \leq \lambda$. Then $S_{x_t}(\mu) \geq r$. Since S_{x_t} is fuzzy filter, $S_{x_t}(\lambda) \geq S_{x_t}(\mu) \geq r$. Thus

$$(3.1) sI_{\gamma}(\lambda, r) \le \bigvee \{x_t \in Pt(X) : S_{x_t}(\lambda) \ge r\}.$$

Conversely, for each $x_t \in Pt(X)$ and $S_{x_t}(\lambda) \geq r$, there exist $\nu_i \in I^X$ with $x_t \in \nu_i$, $\tau(\nu_i) \geq r$, i = 1, 2, ..., n such that $\nu = \bigwedge_{i=1}^n \nu_i \leq \lambda$. Thus $S_{x_t}(\nu) \geq r$, since $x_t \in \nu \leq \lambda$, $x_t \in sI_{\gamma}(\lambda, r)$. Then

(3.2)
$$\bigvee \{x_t \in Pt(X) : S_{x_t}(\lambda) \ge r\} \le sI_{\gamma}(\lambda, r).$$

From (3.1) and (3.2) we have

$$sI_{\gamma}(\lambda, r) = \bigvee \{x_t \in Pt(X) : S_{x_t}(\lambda) \ge r\}.$$

Theorem 3.3. Let (X, τ) be a sfts, $\lambda \in I^X$ and $r \in I_0$. Then we have

- (i) $sI_{\gamma}(\underline{1}-\lambda,r)=\underline{1}-sC_{\gamma}(\lambda,r)$.
- (ii) $sC_{\gamma}(1-\lambda,r) = 1 sI_{\gamma}(\lambda,r)$

Proof. For $\lambda \in I^X$ and $r \in I_0$ we have the following:

$$\underline{1} - sC_{\gamma}(\lambda, r) = \underline{1} - \bigwedge \{ \mu \in I^{X} : \mu \ge \lambda, \mu \text{ is } r\text{-}s\gamma\text{fc} \}
= \bigvee \{ \underline{1} - \mu : \underline{1} - \mu \le \underline{1} - \lambda, \underline{1} - \mu \text{ is } r\text{-}s\gamma\text{fo} \}
= sI_{\gamma}(\underline{1} - \lambda, r).$$

(ii) Similar to (i).

Theorem 3.4. Let (X, τ) be a sfts, $\lambda \in I^X$ and $r \in I_0$. Then

- (i) λ is r-s γ fo set if and only if $\lambda = sI_{\gamma}(\lambda, r)$.
- (ii) λ is r-s γfc set if and only if $\lambda = sC_{\gamma}(\lambda, r)$.

Theorem 3.5. Let (X, τ) be a sfts. For $\lambda, \mu \in I^X$ and $r \in I_0$ the following statements are valid:

- (i) $sI_{\gamma}(\lambda, r) \leq \lambda \leq sC_{\gamma}(\lambda, r)$.
- (ii) $sI_{\gamma}(\lambda,r) \leq sI_{\gamma}(\nu,r), \text{ if } \lambda \leq \mu.$
- (iii) $sC_{\gamma}(\lambda, r) \leq sC_{\gamma}(\nu, r)$, if $\lambda \leq \mu$.
- (iv) $sI_{\gamma}(sI_{\gamma}(\lambda,r),r) = sI_{\gamma}(\lambda,r).$
- $({\bf v})\ sC_{\gamma}(sC_{\gamma}(\lambda,r),r)=sC_{\gamma}(\lambda,r).$

Proof. Straightforward.

Theorem 3.6. Let (X,τ) be a sfts. Then the mapping $T:I^X\to I$ which defined by

$$T(\lambda) = \begin{cases} \bigvee \{r : r \in I_0\}, & \text{if } \lambda \quad \text{is} \quad r - s\gamma fc \\ 0, & \text{otherwise,} \end{cases}$$

is a fuzzy topology on X.

Proof. (T1) Since $\underline{0}$ and $\underline{1}$ are r- $s\gamma$ fo set on X for each $r \in I_0$, $T(\underline{0}) = T(\underline{1}) = 1$. (T2) Suppose that there exist $\lambda_1, \lambda_2 \in I^X$ and $r_0 \in I_0$ such that

$$T(\lambda_1 \wedge \lambda_2) < r_0 < T(\lambda_1) \wedge T(\lambda_2).$$

Then $T(\lambda_1) \geq r_0$ and $T(\lambda_2) \geq r_0$ which implies that

$$S_{x_t}(\lambda_1) \geq r_0$$
 for each $x_t \in \lambda_1$ and $S_{x_t}(\lambda_2) \geq r_0$ for each $x_t \in \lambda_2$.

Since S_{x_t} is a fuzzy filter we have

$$S_{x_t}(\lambda_1 \wedge \lambda_2) \geq S_{x_t}(\lambda_1) \wedge S_{x_t}(\lambda_2) \geq r_0$$
 for each $x_t \in \lambda_1 \wedge \lambda_2$.

Then $\lambda_1 \wedge \lambda_2$ is r_0 -s γ fo set on X. Thus $T(\lambda_1 \wedge \lambda_2) \geq r_0$. It is a contradiction. Hence,

$$T(\lambda_1 \wedge \lambda_2) \geq T(\lambda_1) \wedge T(\lambda_2)$$
 for each $\lambda_1, \lambda_2 \in I^X$.

(T3) Suppose that there exist $\lambda = \bigvee_{i \in J} \lambda_i \in I^X$ and $r \in I_0$ such that

$$T(\lambda) < r_0 \le \bigwedge_{i \in J} T(\lambda_i).$$

Then $T(\lambda_i) \geq r_0$ for each $i \in J$, this implies that $S_{x_t}(\lambda_i) \geq r_0$ for each $x_t \in \lambda_i$, $i \in J$. By using Theorem 3.1, we have $S_{x_t}(\bigvee_{i \in J} \lambda_i) \ge r_0$ for each $x_t \in \bigvee_{i \in J} \lambda_i$. Thus $S_{x_t}(\lambda) \geq r_0$, a contradiction. Thus

$$T(\bigvee_{i \in J} \lambda_i) \ge \bigwedge_{i \in J} T(\lambda_i)$$
 for each $\{\lambda_i : \lambda_i \in I^X\}$.

4. $s\gamma$ -fuzzy continuous and $s\gamma^*$ -fuzzy continuous mappings

Definition 4.1. Let (X, τ_1) and (Y, τ_2) be fts's and let τ_1^* be an associated supra fuzzy topology with τ_1 . Then the mapping $f: X \to Y$ is called $s\gamma$ -fuzzy continuous if $f^{-1}(\lambda)$ is r-s γ -fo set on X for each $\lambda \in I^Y$ with $\tau_2(\lambda) \geq r$.

Theorem 4.1. Let $f:(X,\tau_1)\to (Y,\tau_2)$ be a mapping from a fts (X,τ_1) to another fts (Y, τ_2) and let τ_1^* be an associated supra fuzzy topology with τ_1 . Then the following statements are equivalent:

- (i) f is $s\gamma$ -fuzzy continuous;
- (ii) $f^{-1}(\lambda)$ is r-s γ -fc set on X for each $\lambda \in I^X$ and $r \in I_0$ with $\tau_2(\underline{1} \lambda) \geq r$;
- (iii) $f(sC_{\gamma}(\nu,r)) \leq C_{\tau_2}(f(\nu),r)$ for each $\nu \in I^X$, $r \in I_0$;
- (iv) $sC_{\gamma}(f^{-1}(\lambda), r) \leq f^{-1}(C_{\tau_{2}}(\lambda, r))$ for each $\lambda \in I^{Y}$, $r \in I_{0}$; (v) $f^{-1}(I_{\tau_{2}}(\lambda, r)) \leq sI_{\gamma}(f^{-1}(\lambda), r)$ for each $\lambda \in I^{Y}$, $r \in I_{0}$.

Proof. (i) \Leftrightarrow (ii) It is easily proved from Definition 3.1, and $f^{-1}(\underline{1} - \lambda) = \underline{1} - f^{-1}(\lambda)$.

(ii) \Rightarrow (iii) Suppose that there exist $\nu \in I^X$ and $r \in I_0$ such that

$$f(sC_{\gamma}(\nu,r)) \nleq C_{\tau_2}(f(\nu),r).$$

Then there exist $y \in Y$ and $t \in I_0$ such that

$$f(sC_{\gamma}(\nu,r))(y) > t > C_{\tau_2}(f(\nu),r)(y).$$

If $f^{-1}(\{y\}) = \phi$, then $f(sC_{\gamma}(\nu, r))(y) = 0$, it is a contradiction. If $f^{-1}(\{y\}) \neq \phi$, then

$$f(sC_{\gamma}(\nu,r))(y) = \sup_{x \in f^{-1}(\{y\})} sC_{\gamma}(\nu,r)(x) > t > C_{\tau_2}(f(\nu),r)(f(x)).$$

Then there exist $x_0 \in f^{-1}(\{y\})$ such that

$$(4.1) f(sC_{\gamma}(\nu,r))(y) \ge sC_{\gamma}(\nu,r)(x_0) > t > C_{\tau_2}(f(\nu),r)(f(x_0)).$$

Since $C_{\tau_2}(f(\nu),r)(f(x_0)) < t$, there exists $\mu \in I^Y$ with $\tau_2(\underline{1} - \mu) \geq r$ and $f(\nu) \leq \mu$ such that

$$C_{\tau_2}(f(\nu), r)(f(x_0)) \le \mu(f(x_0)) < t.$$

Moreover, $f(\nu) \leq \mu$ implies $\nu \leq f^{-1}(\mu)$. By (ii) $f^{-1}(\mu)$ is r- $s\gamma$ -fc set on X. Thus

$$sC_{\gamma}(\nu,r))(x_0) \le sC_{\gamma}(f^{-1}(\mu),r))(x_0) = f^{-1}(\mu)(x_0) = \mu(f(x_0)) < t.$$

It is a contradiction with (4.1).

(iii) \Rightarrow (iv) Let $\lambda \in I^Y$ be arbitrary. Put $\nu = f^{-1}(\lambda)$, by (iii) we have

$$f(sC_{\gamma}(f^{-1}(\lambda),r))) \leq C_{\tau_2}(f(f^{-1}(\lambda,r))) \leq C_{\tau_2}(\lambda,r).$$

This implies that

$$sC_{\gamma}(f^{-1}(\lambda),r) \leq f^{-1}(f(sC_{\gamma}(f^{-1}(\lambda),r)))) \leq f^{-1}(C_{\tau_2}(\lambda,r)).$$

(iv)⇒(v) It easily proved from Theorem 1.2 (i) and Theorem 3.3.

 $(v) \Rightarrow (i)$ Let $\mu \in I^Y$ be arbitrary and $\tau_2(\mu) \geq r$. By (v) we have

$$f^{-1}(\mu) = f^{-1}(I_{\tau_2}(\mu, r)) \le sI_{\gamma}(f^{-1}(\mu), r).$$

On the other hand, by Theorem 3.5, $f^{-1}(\mu) \ge sI_{\gamma}(f^{-1}(\mu), r)$.

Thus $f^{-1}(\mu) = sI_{\gamma}(f^{-1}(\mu), r)$. By Theorem 3.4(i), $f^{-1}(\mu)$ is r- $s\gamma$ -fo set on X.

Definition 4.2. Let $f: X \to Y$ be a mapping from a sfts (X, τ_1) to another sfts (Y, τ_2) . Then f is said to be $s\gamma^*$ -fuzzy continuous if $f^{-1}(\lambda)$ is r- $s\gamma$ -fo set on X for each r- $s\gamma$ -fo set λ on Y.

Remark 4.1. Every $s\gamma^*$ -fuzzy continuous mapping and every fuzzy continuous mapping is $s\gamma$ -fuzzy continuous mapping but the converse may not be true as we shows in the following example.

Example 4.1. Let $X = \{x, y\}$ and $Y = \{a, b\}$ be sets. Define $\lambda_1, \lambda_2 \in I^X$ and $\mu_1, \mu_2, \nu \in I^Y$ as follows:

$$\lambda_1(x) = 1.0$$
 $\lambda_1(y) = 0.6$ $\lambda_2(x) = 0.6$ $\lambda_2(y) = 1.0$ $\mu_1(a) = 1.0$ $\mu_1(b) = 0.7$ $\mu_2(a) = 0.0$ $\mu_2(b) = 1.0$ $\nu(a) = 0.8$ $\nu(b) = 0.8$.

Define the fuzzy topologies $\tau_1:I^X\to I$ and $\tau_2:I^Y\to I$ as follows:

$$\tau_{1}(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{0}, \underline{1} \\ 0.5, & \text{if} \quad \lambda = \lambda_{2} \\ 0, & \text{otherwise.} \end{cases}$$

$$\tau_{1}(\lambda) = \begin{cases} 1, & \text{if} \quad \mu = \underline{0}, \underline{1} \\ 0.4, & \text{if} \quad \mu = \underline{0}, \underline{1} \end{cases}$$

 $\tau_2(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{0}, \underline{1} \\ 0.4, & \text{if } \mu = \mu_1 \\ 0, & \text{otherwise.} \end{cases}$

Define their associated supra fuzzy topologies $\tau_1^*:I^X\to I$ and $\tau_2^*:I^Y\to I$ as follows:

$$\tau_1^*(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{0}, \underline{1} \\ 0.7, & \text{if} \quad \lambda = \lambda_1 \\ 0.6, & \text{if} \quad \lambda = \lambda_2 \\ 0, & \text{otherwise.} \end{cases}$$

$$\tau_2^*(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{0}, \underline{1} \\ 0.6, & \text{if } \mu = \mu_1, \mu_2 \\ 0, & \text{otherwise.} \end{cases}$$

Let $0 < r \le 0.4$ and $0 < t \le 0.6$. Then we have

$$S_{x_t}(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{1} \\ 0.7, & \text{if} \quad \lambda_1 \le \lambda < \underline{1} \\ 0.6, & \text{if} \quad \lambda_2 \le \lambda < \underline{1} \\ 0.7, & \text{if} \quad \lambda_1 \wedge \lambda_2 \le \lambda < \lambda_1 \\ 0, & \text{otherwise.} \end{cases}$$

$$S_{y_t}(\lambda) = \begin{cases} 1, & \text{if} \quad \lambda = \underline{1} \\ 0.7, & \text{if} \quad \lambda_1 \le \lambda < \underline{1} \\ 0.6, & \text{if} \quad \lambda_2 \le \lambda < \underline{1} \\ 0.7, & \text{if} \quad \lambda_1 \wedge \lambda_2 \le \lambda < \lambda_1 \\ 0, & \text{otherwise.} \end{cases}$$

$$S_{a_t}(\mu) = \begin{cases} 1, & \text{if} \quad \mu = \underline{1} \\ 0.6, & \text{if} \quad \mu_1 \le \mu < \underline{1} \\ 0, & \text{otherwise.} \end{cases}$$

$$S_{b_t}(\mu) = \begin{cases} 1, & \text{if } \mu = \underline{1} \\ 0.6, & \text{if } \mu_1 \wedge \mu_2 \leq \mu < \underline{1} \\ 0, & \text{otherwise.} \end{cases}$$

Define the mapping $f: X \to Y$ as follows:

$$f(x) = a, f(y) = b.$$

Then f is $s\gamma$ -fuzzy continuous but it is neither $s\gamma^*$ -fuzzy continuous nor fuzzy continuous.

Theorem 4.2. Let $f:(X,\tau_1)\to (Y,\tau_2)$ be a mapping from a sfts (X,τ_1) to another sfts (Y, τ_2) . Then the following statements are equivalent:

- (i) f is $s\gamma^*$ -fuzzy continuous;
- (ii) $f^{-1}(\lambda)$ is r-sy-fc set on X for each r-sy-fc set on Y, $r \in I_0$;
- (iii) $f(sC_{\gamma}(\nu,r)) \leq sC_{\gamma}(f(\nu),r)$ for each $\nu \in I^X$, $r \in I_0$; (iv) $sC_{\gamma}(f^{-1}(\lambda),r)) \leq f^{-1}(sC_{\gamma}(\lambda,r))$ for each $\lambda \in I^Y$, $r \in I_0$;
- (v) $f^{-1}(sI_{\gamma}(\lambda,r)) \leq sI_{\gamma}(f^{-1}(\lambda),r)$ for each $\lambda \in I^{\gamma}$, $r \in I_0$.

Proof. Similar to the proof of Theorem 4.1.

Definition 4.3. Let (X, τ_1) and (Y, τ_2) be fts's and let τ_2^* be an associated supra fuzzy topology with τ_2 . Then the mapping $f: X \to \overline{Y}$ is called $s\gamma$ -fuzzy open if $f(\nu)$ is r-s γ -fo set on Y for each $\nu \in I^X$ with $\tau_1(\nu) \geq r$.

Theorem 4.3. Let $f:(X,\tau_1)\to (Y,\tau_2)$ be a mapping from a fts (X,τ_1) to another fts (Y, τ_2) and let τ_2^* be an associated supra fuzzy topology with τ_2 . Then the following statements are equivalent:

- (i) f is $s\gamma$ -fuzzy open;
- (ii) $f(I_{\tau_1}(\nu,r)) \leq sI_{\gamma}(f(\nu),r)$ for each $\nu \in I^X$, $r \in I_0$; (iii) $I_{\tau_1}(f^{-1}(\lambda),r)) \leq f^{-1}(sI_{\gamma}(\lambda,r))$ for each $\lambda \in I^Y$, $r \in I_0$.

Proof. (i) \Rightarrow (ii) For all $\nu \in I^X$, $r \in I_0$, since $\tau_1(I_{\tau_1}(\nu,r)) \geq r$, $f(I_{\tau_1}(\nu,r))$ is r- $s\gamma$ -fo set on Y. From Theorem 3.4, we have

$$f(I_{\tau_1}(\nu,r)) = sI_{\gamma}(f(I_{\tau_1}(\nu,r)),r) \le sI_{\gamma}(f(\nu),r).$$

(ii) \Rightarrow (i) For all $\nu \in I^X$, $r \in I_0$ with $\tau_1(\nu) \geq r$ we have $I_{\tau_1}(\nu,r) = \nu$. By using (ii) we have

$$f(\nu) = f(I_{\tau_1}(\nu,r)) \le sI_{\gamma}(f(\nu),r).$$

Then, $f(\nu) = sI_{\gamma}(f(\nu), r)$. By Theorem 3.4, $f(\nu)$ is r-s γ -fo set on Y. Thus fis $s\gamma$ -fuzzy open.

(ii) \Rightarrow (iii) For all $\lambda \in I^Y$, $r \in I_0$, by (ii) we have

$$f(I_{\tau_1}(f^{-1}(\lambda), r)) \le sI_{\gamma}(f(f^{-1}(\lambda)), r) \le sI_{\gamma}(\lambda, r).$$

This implies that

$$I_{\tau_1}(f^{-1}(\lambda), r) < f^{-1}(f(I_{\tau_1}(f^{-1}(\lambda), r))) \le f^{-1}(sI_{\gamma}(\lambda, r)).$$

(iii) \Rightarrow (ii) For all $\nu \in I^X$, $r \in I_0$, by (ii) we have

$$I_{\tau_1}(\nu, r) \leq I_{\tau_1}(f^{-1}(f(\lambda)), r) \leq f^{-1}(sI_{\gamma}(f(\nu), r)).$$

This implies that

$$f(I_{\tau_1}(\nu,r)) \le f(f^{-1}(sI_{\gamma}(f(\nu),r))) \le sI_{\gamma}(f(\nu),r).$$

Theorem 4.4. Let $f:(X,\tau_1) \to (Y,\tau_2)$ be a mapping from a fts (X,τ_1) to another fts (Y,τ_2) and let τ_2^* be an associated supra fuzzy topology with τ_2 . Then the following statements are equivalent:

- (i) f is $s\gamma$ -fuzzy open;
- (ii) For each $x_t \in Pt(X)$ and for each $\nu \in I^X$, $r \in I_0$ with $\tau_1(\nu) \ge r$ and $x_t \in \nu$, we have $S_{x_t}(f(\nu)) \ge r$.

Proof. It is easy. \Box

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [2] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), no. 2, 237-242.
- [3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), no. 2, 207-212.
- [4] M. Demirci, Neighborhood structures of smooth topological spaces, Fuzzy Sets and Systems 92 (1997), no. 1, 123-128.
- [5] M. H. Ghanim, O. A. Tantawy, and F. M. Selim, Gradation of supra-openness, Fuzzy Sets and Systems 109 (2000), no. 2, 245-250.
- [6] M. Güloglu and D. Çoker, Convergence in I-fuzzy topological spaces, Fuzzy Sets and Systems 151 (2005), no. 3, 615-623.
- [7] U. Höhle and A. P. Šostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems 73 (1995), no. 1, 131-149.
- [8] Y. C. Kim, r-fuzzy semi-open sets in fuzzy bitopological spaces, Far East J. Math. Sci. (FJMS) 2000, Special Volume, Part II, 221-236.
- [9] _____, Initial L-fuzzy closure spaces, Fuzzy Sets and Systems 133 (2003), no. 3, 277-297.
- [10] P. M. Pu and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), no. 2, 571-599.
- [11] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), no. 3, 371–375.
- [12] _____, Smooth filter structures, J. Fuzzy Math. 5 (1997), no. 2, 297-308.
- [13] A. A. Ramadan, M. A. Abd El-Satter, and Y. C. Kim, Some properties of smooth filters, J. Fuzzy Math. 11 (2003), no. 2, 341-354.
- [14] A. P. Šostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo (2) Suppl. No. 11 (1985), 89-103.
- [15] _____, On the neighborhood structure of fuzzy topological spaces, Zb. Rad. No. 4 (1990), 7 14.
- [16] _____, Basic structures of fuzzy topology, J. Math. Sci. 78 (1996), no. 6, 662-701.

A. A. RAMADAN
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
AL-QASSEM UNIVERSITY
P.O. BOX 237, BURIEDA 81999, SAUDI ARABIA
E-mail address: aramadan58@yahoo.com

A. A. ABD EL-LATIF
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
BENI-SUEF UNIVERSITY, EGYPT
E-mail address: ahmeda73@yahoo.com