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MENDELSOHN TRIPLE SYSTEMS EXCLUDING
CONTIGUOUS UNITS WITH A =1

CHUNG JE CHO

ABSTRACT. We obtain a necessary and sufficient condition for the exis-
tence of Mendelsohn triple systems excluding contiguous units with A = 1.
Also, we obtain the spectrum for cyclic such systems,

1. Introduction

If X = {zo,1,...,Ty—1} is acyclically ordered set of points, then two points
x; and z;y; are said to be contiguous points for all ¢ such that 0 <i <wv—2, as
are T,_; and zg. Otherwise, they are non-contiguous. A triple saempling plan
excluding contiguous units TSEC(v, A) of order v and indez A is a pair (X, B)
where X is a cyclically ordered v-set of points (units) and B is a collection
of 3-subsets of X, called triples, such that any two contiguous points of X do
not appear in any triple while any two non-contiguous distinct points appear
in exactly A triples of 8. When any two distinct points appears in precisely
A triples of B, it is a triple system TS(v,A). There exists a TS(v, A) if and
only if A = 0 (mod ged(v — 2,6)) and v # 2 [8], and a TSEC(v, ) exists if
and only if v € {0,3} or v > 9 and A(v — 3) =0 (mod 6) [6].

Hung and Mendelsohn [10] considered triple systems in which the triples
are ordered. A transitive triple [z,y,z] is taken to contain the ordered pairs
(z,9),(z,2) and (y,z). A directed triple system DTS(v,\) is a pair (X,B)
where X is a v-set of points and B is a collection of transitive triples of X
such that every ordered pair (z,y) of distinct points of X appears in precisely
A transitive triples in B. Necessary and sufficient conditions for the existence
of directed triple systems have been established by Hung and Mendelsohn for
A = 1 [10], and by Seberry and Skillicorn for all A [12]; they found that the
conditions for the existence of a DT'S(v, A) are the same as those for the exis-
tence of a T'S(v,2)). Mendelsohn [11] also considered triple systems in which
the triples are ordered slightly different from transitive triples. A cyclic triple
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(z,y,2) is a 3-set of the ordered pairs (z,y), (y,2) and (z,z). A Mendelsohn
triple system MTS(v, ) is a pair (X,B) where X is a v-set of points and B
is a collection of cyclic triples of X such that every ordered pair (z,y) of dis-
tinct points of X appears in precisely A cyclic triples in 8. The existence of a
MTS (v, A) was settled by Mendelsohn for A = 1 [11], and by Bennett for all A
[2]. There exists a DT'S(6,1) while there does not exists a MTS(6,1).

Analogously, if X is a cyclically ordered v-set of points, then we may define a
directed [Mendelsohn] sampling plan excluding contiguous units DT'SEC (v, A)
[MTSEC(v,\)] based on X as a collection B of transitive [cyclic] triples of X
such that any ordered pair of two contiguous points of X does not appear in
any transitive [cyclic, respectively] triple in %8 while each ordered pair of two
non-contiguous distinct points appears in exactly A members of B.

Naturally, if we treat the transitive [cyclic] triples of a DT'S(v,A) [MTS(v,)\)]
as unordered 3-subsets, we obtain a T'S(v,2A) which is called the underlying
triple system of the DT'S(v, X) [MTS(v, A), respectively]. The underlying triple
system of a DT'S(v, A) [MTS(v, \)] is termed directable [cyclable, respectively].

Theorem 1.1 ([4, 5, 9]). Every T'S(v,2)) is directed.

From Theorem 1.1, every TSEC (v, 2)) is obviously directed, and hence the
existence of a DTSEC (v, A) is equivalent to the existence of a TSEC(v,2A).
From [6], we have the following theorem.

Theorem 1.2. There exists a DTSEC(v, ) if and only if v € {0,3} orv>9
and Av =0 (mod 3).

There exists a T.5(6,2), but not a MTS(6,1). Thus not every T.S(v,2A) is
cyclical and hence every TSEC (v, k,2)) is not cyclical. Therefore, the exis-
tence of a MTSEC (v, A) is in doubt. In this paper, we obtain a necessary and
sufficient condition for the existence of a MTSEC (v, \) with A = 1. We simply
denote MTSEC(v) for MTSEC(v,1). Since the existence of a MTSEC(v, A)
implies the existence of a TSEC(v,2), we have the following necessary con-
dition.

Lemma 1.3. If there exists a MTSEC(v,}), then v € {0,3} or v > 9 and
Av =0 (mod 3). When A =1, it isv =0 (mod 3) and v # 6.

In the next section, we will show that there exists a MTSEC(v) for allv =0
(mod 3) and v # 6 (we will omit the trivial case v € {0,3}.)

2. The existence of MTSEC (v)s

We will first construct a MTSEC(v) for v = 12, 18,24, 30, 36,42, 48, 60 and
78, and then establish the existence of a MTSEC (v) by employing a recur-
sive method for all v = 0 (mod 3) and v ¢ {0,3,6}. An automorphism of a
MTSEC(v), (X,B), is a permutation a on X such that each cyclic triple of
B maps onto a cyclic triple. A MTSEC(v) is said to be bicyclic if it admits
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an automorphism consisting of exactly two cycles of length §. Such an au-
tomorphism is said to be bicyclic. If {X,B) is a bicyclic MTSEC(v) with a
bicyclic automorphism «, then the group (a) generated by a acts on B. Thus
B is partitioned into mutually disjoint orbits. A collection of cyclic triples,
called base blocks, which are taken each of the orbits exactly once represents
the bicyelic MTSEC(v) together with the bicyclic automorphism. In order to
avoid the presentation of many large systems, whenever possible, we present a
collection of base blocks for a bicyclic MTSEC(v). It is convenient to name
the points as ordered pairs from

{0,1,...,”;2} x {1,2},

taking (¢,1) and (j,2) to be contiguous when i = j, ori = j +1 (mod §). We
write shortly z; for the ordered pair (z,7).

We will construct that our bicyclic MTSEC(v) is based on {0,1,..., %52} x
{1,2} and the corresponding bicyclic automorphism is

(0,,11,..4,(; —1)1) (02,123...,(32’- ~—1)2>.

Lemma 2.1. There exists a bicyclic MTSEC(v) for v = 12, 18, 24, 30, 36,
42, 48, 60 and 78.

Proof. A collection of base blocks for a MTSEC(v) is

when v = 12:
(11701342)7 (02512751)7 (01741712)7 (02721:42)7 (Olazlasl)a
(02, 59, 22),

when v = 18:;

(01,11,41), (01,41,11), (02,12,32), (01,21,72), (72,21,01),
{(42,35,01), (32,12,01), (01,12,45), (22762,01), (62,22,01),
when v = 24:
(01,11,101), {01,31,81), (01,64,21), (02,129,535}, (11,01,8:),
(51,01,102), (82,72,01), (72,32,01), (32,12,01), (12,62,0¢),
(62,92,01), (22,42,01), (42,102,01), (52,22,0,),
when v = 30:
(01, 11,41), (0, 41,10),  (04,21,81),  (04,81,21),  (12,00,42),
{01, 51, 109), (51,01, 102), {(22,39,01), (32,99, 01), (92,112,071},
{115,62,01), (62,13,,0;), (133,72,09), (72,125,07), {122,840, ),
(82,12,01), (12,49,01), (42,22,01),



234 CHUNG JE CHO

when v = 36:
(01,11,151),  (01,21,121), (01,91, 31), (01,71,51), (01,81, 11),
(01,41:162) (0 51772)7 (O 12792)5 (6 52701): (52,112701)a
(113,45,01),  (42,92,01), (92,15,0y), (12,8,,01), (82,2,01),
(72,32,00),  (32,60,01),  (162,132,01), (132,155,01), (153,10,01),
(104,145,0,), (142,125,04),
when v = 42:
(01,11,51), (01,51, 11),  (01,21,101),  (01,101,21),  (01,31,%),
(01,91,31), (01,71,142), (71,01,140), (12,02,42), (115,195,0¢),
(192:112a01)7 (4 62701)7 (62742101)3 (3 82501) (8 32a01)
(22,92,01),  (92,22,01), (132,162,01), (162,175,01), (172,135,01),
(12,102,01),  (102,12,01), (52,155,01), (152,52,01), (125,182,0;),
(185,12, 01),
when v = 48:
(01)11)31) (01331711)7 (013131741)7 (Ola121751) (017141361)
(01,41,131),  (01,61,14;),  (01,51,122), (01,71,192), (02, 15,125),
(199,229,01), (222,205,01), (209, 154, 04), (159,172,01), (179,169,07),
(162,215,0,), (212,18,04), (182,72,01), (12,112,0y), (112,14, 07),
(2, 104,04}, (102,22,01), (32 ,92,01), (9 ,32,01), (4 82,01),
(82,42,01), (52,145,01), (142,52,04), (62,132,01) (132,62,01),
when v = 60:
(01,11,251),  (01,151,2;), (01,31,221), (01,41,161), (01,61,171),
(01,271,71), (01,184,81), (01,261,51), (11,01,272), (01,21,28),
(01,71,232) (91,01,125), (141,01,225), (02,155,142), (02,15,95),
(527102)01)7 (102752701) (42:112701)7 (112742501) (3 122301)7
(22,135,01), (132,22,01), (62,92,04), (92,62,04), (82,225,0,),
(192:72:01); (7 192701) (2527152701)7 (1521252501) (142512a01)
(12,149,01), (209,18,,0y), (184, 209,01),
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when v = 78:
(01,15,171),  (01,174,1y), (
(03,114,31),  (01,41,81),
(01,61,151),  (01,151,61),
(252,313,01), (312,252,01), (
(332,285,0,), (282,362,01), (
(272,292,01), (12,209,01), (202,15,0¢),
(32,180,01), (182,33,01), (42,172,0;),
(162,59,01),  (62,159,01), (152,65,0,),
( ( (
( ( (

01,31,111),
01,121,51),
12,02, 42),

01,21,20,),
01,81, 41),

(01,201,21), (
(01,51,121), (
01,13;,26,), (13;,01,262), (
29,,32,,01), (325,372,01), (372,335,01),
362,345,01), (345,35,0,), (352,274,01),
(22,192,01),  (192,25,01),
(172,42,01), (
(72,145,01),
(232,92,01).
(129,309,01), (

59,162,01),
145, 75,01),
109, 225,01),
302,122,04).

0

85,245,04),
2227 102501)

245,82,01),  (92,235,04),

115,215,0y1), (212,115,04),

A group divisible design (GDD) of order v and indez A is a triple (X, G,B)
which satisfies the following properties:

(1) X is a v-set of points,

(2) G is a partition of X whose members are called groups, and

{3) B is a collection of subsets of X, called blocks, such that any block and
any group contain at most one common point, and every pair of points from
distinct groups occurs in exactly A blocks.

The group-type (type) of the GDD is the multiset {|{G| : G € G}. We use
the notation for group-type: gi'gs”--- g indicates that there are u; groups
of size g; for 1 < i <s. Theset K = {|B| : B € B} is the set of block sizes
of the GDD, and the notation K-GDD is used to denote a GDD whose block
sizes lie in the set K. When K = {k}, we write k-GDD for {k}-GDD.

A Latin square of side n is a n x n array based on a set S of n symbols with
the property that every row and every column contains every symbol exactly
once. Two Latin squares A = (a;;) and B = (b;;) of the same side n are said to
be orthogonal if the n* ordered pairs (a,;, b;;), the pairs formed superimposing
one square on the other, are all different. There exist three mutually orthogonal
Latin squares of side n for all n # 2,6,10 [13,14]. The existence of a 4-GDD
of n* and index 1 is equivalent to the existence of three mutually orthogonal
Latin squares of side n [1]. Thus there exists a 4-GDD of n* and index 1 for
all n except for n = 2, 3,6, 10.

A 3-GDD with index A, (X,G,B), is called a Mendelsohn group divisible
design (MGDD) if each block of B is considered as a cyclic triple and every
ordered pair of points from distinct groups occurs in exactly A blocks. It is not
hard to construct a MGDD of type 2¢, 3 < i < 4, and index 1. Namely, taking
groups {1,2},{3,4}, {5,6} and cyclic triples

(1,3,5),(1,5,3),(1,4,6),(1,6,4),(2,3,6),(2,6,3),(2,4,5),(2,5,4)
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we have a MG DD of type 22 and index 1, and groups {1, 2}, {3,4}, {5,6}, {7,8}
and cyclic triples

(1,3,6), (1,4,8), (1,5,7), (2,3,7), (2,4,5), (2,6,8), (3,5,8), (4,6,7),
(1,6,3), (1,8,4), (1,7,5), (2,7,3), (2,5,4), (2,8,6), (3,8,5), (4,7,6)

form a MGDD of type 2* and index 1. Consequently, there exists a MGDD
of type 2¢, 3 <14 < 4, and index A > 1.

A partial triple system PTS(v,A) of order v and indez A is a pair (V,B)
where V is & v-set of points and B is a collection of 3-subsets of V, called
triples, such that every 2-subset of V appears in at most A triples of ‘B.
The leave of a PTS(v,A) is the collection of pairs of points, which appear
fewer than X times in the triples of the PTS(v,A) and if a pair {z,y} ap-
pears in s{< A) triples then it appears A — s times in the leave. Let V =
{Z1,%9,...,L2m+1} be a (2m + 1)-set. If 2m + 1 = 1,5 (mod 6), then Col-
bourn and Rosa {7] show that there exists a PT.S(2m + 1, 1) whose leave is the
set {{z1,%2}, {z2, 23}, ..., {Tam—1,Z2m}> {Tom, 21 }}. The following lemma is
slightly modified the Lemma 3.1 of Colbourn and Ling [6].

Lemma 2.2. (1) Letm # 2,3,6,10 andz = 0 or 5 < x < m. If there exist both
a MTSEC(2m,A) and a MTSEC(2z,)), then there exists a MTSEC(6m +
2z, A).

(2) Letm # 2,3,6,10,4 <z <m and 2m+1 = 1,5 (mod 6). If there exists
o« MTSEC 2z + 1, A), then there exists a MTSEC(6m + 2z + 1, A).

Proof. Since m # 2,3,6,10, there exists a 4-GDD of type m* and index 1.
Let us have a 4-GDD of type m* and index 1, whose groups are G1,Gs, G3
and Gy, and blocks B. Partition G4 into two disjoint subsets A and B so that
|A] = z, and |4| > 0 whenever z > 0. For Case (1), a MTSEC(6m+ 2z, A) to
be constructed has points

(G1 U G2 U Gg U A) X {1,2},

and in Case (2), a MTSEC(6m + 2z + 1,) to be constructed has the same
points together with an additional point oo.

Choose one block D € B, so that when A is nonempty, D N A # § (when
A =0, one has z = 0; in this case choose any block to serve as D).

For each block {u,v,w, 2} € B other than D with z € G4, set

c=0ifzeB; ando=2if z € A.
Then form a MGDD of type 230! and index A with groups
{(w, 1), (u,2)}, {(v, 1), (v,2)},
{(w,1), (w,2)}, {(z,d)]i =1,0}(=0if 0 = 0).

Next, we handle the block D = {ai1, 012,013, a14} with a1; € G;, i =
1,2,3,4. For ¢ = 1,2,3, we assume that

G; x {la 2} = {(alia 1): (a‘lia 2)7 (a2ia 1)7 (a2i72)= LR (amz’; 1)7 (amz’, 2)}
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is cyclically ordered, and if a14 € A, then
A x{1,2} = {(a14,1),{a14,2), (asq,1), (224,2), ..., (a24,1), (az4,2) }
is assumed to be cyclically ordered for Case (1). In Case (2),
Ax{1,2} U {cc} = {(a14,1),(a14,2), (az4, 1), (a24,2), ..., {0z4, 1), (az4,2),00}

is assumed to be cyclically ordered. If a14 € B, form a MGDD of type 2° and
index A with groups

{(amlv 2)7 (a‘127 1)}7 {(am272)7 (al'S’ 1)}7 {{am372)7 (alla 1)}

If a;4 ¢ B, then, by assumption, a;4 € 4. In Case (1), place the blocks of a
MGDD of type 2¢ and index X with groups

{(G'THIaz)a (0425 1)}= {(am?ﬂ 2)9 ((113, 1)} {(am&z)a (044, 1)}9 {(al472)a (0,11, 1)}9
in Case (2), with groups

{(am17 2)3 (a127 1}}’ {(am27 2)1 (a13a 1}}1 {(am?n 2)’ (a147 1)}’ {OC, ((111, 1)}

We now treat the cases separately for the rest, observing Case (1) first. For
1 =1,2,3, form a MTSEC(2m, ) on the points G; x {1,2} with the given
cyclically ordering.

Next, if z > 0, form a MTSEC(2z, A) on the points A x {1,2} with the given
cyclically ordering. The resulting cyclic triples form a required MTSEC(6m +
2z, ).

Let us turn to Case (2). For i = 1,2, 3, form a PT'S(2m +1,1) on the points
(Gi x {1,2}) U {oo} whose leave is the cycle of 2m points of G; x {1,2}, that

is,

{{(aiiv 1)7 {alia 2}}) {(&12‘, 2)’ (a2ia 1)}v {((Zz,‘, l)v ([32;‘, 2)}’ T

{(amia 1)? (ami, 2)}7 {(amia 2)? (alia 1)}}’
then form A times cyclic triples (a,b, ¢) and (a, ¢, b) each for each block {a, b, ¢}
of the PT'S(2m + 1,1).

Next, form a MTSEC(2z+1, X) on the points Ax {0, 1}U{oo} with the given

cyclically ordering. The resulting cyclic triples form a required MTSEC(6m +
224+ 1, 7). O

If we replace each triple {x,y,z} of a TSEC(v,1) by two cyclic triples
(z,y,2) and (z,z,y), the resulting cyclic triples form a MTSEC(v). Since
there exists a TSEC(v,1) for v = 3 (mod 6) [6], so does a MTSEC(v) for
such all v. Thus we have the following lemma.

Lemma 2.3. If v =3 (mod 6), then there ezists a MTSEC(v).
Lemma 2.4. If v =0 (mod 6) and v # 6, then there exists a MTSCE(v).

Proof. Let v =0 (mod 6) and v # 6. By Lemma 2.1, there exists a MTSEC (v)
forv = 12,18, 24, 30, 36,42, 48, 60, 78. Now, Lemma 2.2 is applied to be existing
of a MTSEC(v) for v = 54,66,72,84. Write v = 6m + 2z where m = 0
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(mod 3), m > 12 and = € {0,12,6}. Then, by Lemma 2.2, there exists a
MTSEC(v). 0

Lemmas 1.3, 2.3 and 2.4 together yield the following theorem.

Theorem 2.5. There ezxists a MTSCE(v) if and only if v = 0 (mod 3) and
v #6.

3. Concluding remarks

A TSEC(v, ) is said to be eyclic if it admits an automorphism consisting of
a single cycle of length v. Wei [14] shows that there exists a cyclic TSEC(v,1)
if and only if v = 3 (mod 6), and a cyclic TSEC (v, 2) exists if and only if v =
0,3,9 (mod 12). Colbourn [3] shows that every cyclic DT'S(v, 2)) is directable,
so there exists a cyclic TSEC(v, 1) if and only if v = 0,3,9 (mod 12).

Let (a,b,¢) be a base block of a cyclic MTSEC (v, 1) based on the cyclically
ordered set {0,1,...,v — 1}. Define the difference triple [z,y, 2] corresponding
to (a,b,c) so that

z=b—-a (modw), y=c—>b (modv), z2=a—c (moduv).
Then we see that the existence of a cyclic MTSEC (v, 1) is equivalent to parti-
tion of the set {2,3,...,v — 2} into disjoint difference triples [z, y, z] such that
z+y+z= (modwv). Thus, if there exists a cyclic MTSEC(v,1), then
2 vlv — 3)
Zi == = 0 (mod v), equivalently, v —3 =0 (mod 2).

=2

Thus » cannot be even. Therefore, if there exists a cyclic MTSEC(v), then
v = 3 (mod 6) since v must be odd and v = 0 (mod 3) and v # 6. Since
there exists a cyclic TSEC(v,1) for v = 3 (mod 6) [15], we have the following
theorem.

Theorem 3.1. There exists a cyclic MTSCE(v,1) if and only if v = 3
(mod 6).

By Lemma 1.3, a necessary condition for the existence of a MTSEC(v, A)
is

A=1,2 (mod3) and v=0 (mod3), v#6, or
A=0 (mod 3) and ve€{0,3} or v>9.
Since the union of a MTSEC(v, A1) and a MTSEC (v, A2) isa MTSEC (v,

A1 + A2), it suffices to establish the existence of a MTSEC(v, A) for the mini-
mum value of A, namely for

A=1 and v=0 (mod3), v#6, or
A=3 and v=12 (mod3),v>9
To complete the existence of a MTSEC (v, A) for all A, we need the existence

of a MTSEC(v,3) for v = 1,2 (mod 3) with 10 < v < 50 which is unsettled
and then Lemma 2.2 is applied.
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