Bull. Korean Math. Soc. 45 (2008), No. 2, pp. 241-252

OSCILLATION THEOREMS FOR PERTURBED
DIFFERENTIAL EQUATIONS OF SECOND ORDER

RakJoong KiM

ABSTRACT. By means of a Riccati transform and averaging technique
some oscillation criteria are established for perturbed nonlinear differen-
tial equations of second order

(P1) (O (£)" + g(Ole($()[* sgna(@(t)) + g(t, x(1)) = 0

(P2) and (P3) satisfying the condition (H). A comparison theorem and
examples are given.

1. Introduction

The purpose of this paper is to study oscillatory properties of solutions of
nonlinear delay differential equations

(P) [p(t)z' ()] + a(®)|z(6(1)|° sgnz(p(t)) + gt 2(1)) = 0,

() [p®)a' ()] +a®le(@E)I™ sgnz(@(1) +g(t, 2(8), 7' (1)) =0,
and a nonlinear differential equation
(Py) [p0)a'(1)]' + a(t)l2 ()| sgna(t) + g(t,2(1)) = O,

where p, q € C(Ja,00),(0,00)), t > a > 0, @ > 0. We assume that ¢(t) is
nondecreasing and

d(t) <t and ¢(t) = o0 as t = .

In this paper we always define a function p(t) as

g(t)z/ 1/pu)du for a<t,

and assume that
(H) o(t) = o0 ast — oo.
By a solution of differential equations we mean a continuously differentiable

function z : [tg, 00) — R, for some tg, such that z(t) satisfies the differential
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equation for all ¢ > #5. A solution z(t) is said to be oscillatory if it has
unbounded zeros. Otherwise it is said to be nonoscillatory. An equation is said
to be oscillatory if all solutions of the equation are oscillatory.

In the last two decades there has been an increasing interest in obtaining
sufficient conditions for the oscillation and nonoscillation of solutions for dif-
ferent classes of nonlinear differential equations of second order. We refer to
the recent papers [1, 2, 3, 5, 6, 7, 12, 13, 15, 16] where further references can
be founded therein.

For the Emden-Fowler differential equation z" (t) + q(t)|z(t)|**'sgnz(t) = 0
Atkinson and Belohorec proved that

(By) / " tat) dt = oo

if and only if the differential equation is oscillatory. Applying the Leighton
transformation to the above estimate (E; ), Cecci [4, Theorem 5, (ii)] obtained
the more general result under the condition (H) and

(E2) / q(t)o(t) dt = oo

0
if and only if the generalized Emden-Fowler differential equation
(Es) [p(D)a' (1)) + g()e(t)|*  sgna(t) = 0

is oscillatory. We note that the estimate (Es) is valid if [ ¢(t) dt = oo.
We consider a delay differential equation of the form

(Eq) [tz'(t)]'—l—?(sin % |z(t—c)|* M sgnz(t—c)— (1+2tsint) sgnz(t—c) =0,

where ¢t > 0. Even if this equation contains a perturbed term —(1 + 2¢sint)
oscillatory, it has a nonoscillatory solution z(t) = ¢ + ¢. In this paper we seek
the sufficient conditions for the equations (P;), 1 < ¢ < 3, to be oscillatory.

To prove the oscillatory properties of differential equations we make use of
H(t,s) as a weight function. While the function (¢ — )", n > 1, of Kamenev
type [9, 10, 11, 14] or more general classes of weight functions [15] are very
popular in various applications. Let H(t,s) be defined on D = {(t,s) :t > s >
a}. We shall assume that H (¢, s) is sufficiently smooth in both variables ¢ and
s so that the following conditions are satisfied

(Hy) Ht,t)=0fort >a, H(t,s)>0fort>s>a

(Hp) 2HL) = —h(t,)H(t,5)""?,
where h € C(D, [0, )).

2. Main results

In this paper we assume that
(A;y) 1/p(t) is nonincreasing, differentiable and locally integrable.
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Lemma 1 ([8]). Let X, Y be positive constants and o > 0. Then the inequality
(c+ D)XV < X7 4 oyott

is valid where the equality holds if and only if X =Y.

Lemma 2. Let K > 0,a >0, b > 0 and ¢ be constants. Then

t
hﬂi‘ép (t—j_l-lsg /b [K(t — 8)2(s — ¢)s”|sin 2ws|® — (25 — t)ﬂ ds = 0

is valid where § > 0, v > 0.
Proof. By means of a Taylor polynomial with remainder there exists a constant
f, 0 <8 <1, such that
t
/ [K(t —8)%(s — ¢)8” | sin 27s|® — (25 — t)Q} ds
b

= £(t‘s__lf"(e(tmb)~+—b—c)(9(t-~b>+b>”Iﬂn?w(e(t“"’“b)‘lS

- Lt;—b)j — b(t — b)2 — b2(t — b).

1
Then - fbt [K(t —5)%(s—c)s"|sin2ms|® — (25 — t)r"} ds is a function of ¢

with degree 2 4+ . Choose an increasing sequence {t,} such that

1
lim t, =00, b+8(t,—-0) =n+ -,

n—o0 4

where n is a positive integer. So our lemma follows because v > 0 and coeflicient
of (tn — b)**7 is K6'*7/3 > 0. O

Theorem 3. Let the conditions (H), (A1), and
(As) g(t) = f(t) - sgnz(t) with f(t) >0 for allt > a

be satisfied. Assume that there emists a positive function p(t) € C'(la, oo))
such that for some X\ € (0,1)

t a+1 a++l
imaup L {A{(“—*j—*} H(t,5)p(s)

x q(s)ai 9(5) (s)a+1 —V(t,5)%] ds =00
1s valid where

@) V(t.5) = 3P0 [(t) - -

Then the equation (P)) is oscillatory.
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Proof. Assume that z(t) is a nonoscillatory solution of the equation (P;) and
that there exists Ty > a such that z{t) > 0, z(¢()) > 0 forall t > T. So
p(t)x’(¢) is decreasing for t > Tp. Tt is not difficult to show there exists a T}
with 77 > Tg such that z'(¢) > 0 for ¢t > T;. Consider the function ¥(¢) defined
by

3) B(t) = / p(r) (7) dr.

Ty

By mean value theorem it follows that

(4) ¥O) =)t -T1) > ¥)(t-T1) for t>T1,
. . () 1 .
from which we can derive < . It is clear from (3) and (4;) that
U(t) —t-Ty
T(t) < p(t)(z(t) — z(T1)). It follows that
H
) z'(t) < 1

z(t)—z(Ty) —t-Ty
Therefore for A € (0,1) there exists T» > T; such that

(6) A9(t) < =(¢(0) for T, <t

t T oz
Now we consider a Riccati transform
p(t)x'(t
™) Wit) = pyy 202,

z(t)

It is obvious that

" p't) s(e(t)*  fW 1 2
&) w'(t) = o0 W(t) - (){Q() N x(t)} p@)pmw(t)-

)
By Lemma 1 with 0 = a, X = g(t)l/(a“)&t@x(i), and Y = (f(t)/a)*/(>+)
we can derive the inequality

©  Cug® M 05 <o) () s+ 0

from which q(t)M@)Lt + f% is bounded below by
T

O g0/ 22 pipposioy

where

) 0, - {lat ity

aa
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Thus (8) is reduced to
(11)
W'(t) <

E

|

W) - rce pieyateyiory 28 pyosoen L

2
) : UM

)
—
o~

Integrating for s from Ty > a to t after multiplying (11) by H(t, s) we obtain

t

ACq, H(t,s)p(s)q(s)l/(a-H) ?_(‘ﬁf(s)a/(a+1) ds

T s
‘ [ _ ‘ 1 2
(12) < - s H{(t,s)W'(s)ds /T2 ———p(s)p(s)H(t,s)W(s) ds

" p'(s)
+/r2 o(5) H(t,s)W(s)ds.

In view of (H,), (H2) it follows that

t ¢

(13) H(t,s)W'(s)ds = —H(t,To)W(Tx) + | h(t,s)\/H(t,s)W(s)ds.
T2 T2

Thus the below terms of the inequality (12) are transformed into

t

H(t, T)W(Ty) — /

T2

[{h(t, )= Lo p T ()
(14

5005 H(t,s)W(s) jl ds.

Using (14) we obtain

t

3o [ H(t,)ple)a() @) 2 piayesionn) g
Tz

¢ H(t,s)
p(8)p(s)

2
t

ds+/ V(t,s)? ds,
T2

< H(t, To)W (Ty) - / W(s) + V(t,3)

T2

where V(t,s) is given by (2). From the latter inequality and (H) it follows
that

T s
< H(,T2)W(T2) < H(t, o)W (D).

/t [/\Ca H{(t,s)p(s)q(s)"/ >+ @f(s')“/(“*” - V(t,S)Z] ds
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Since this inequality is valid for all ¢ > T5, by (H3) we have

/ t [Aca H(t,)p(a(s)/ o+ 8 pgporiorn - V<t,s)2] ds

8
o [ [A@H(t,s)p(s) ORI —(Sﬁfw)a/(a“)—wt,s)?] ds
+ H(t, Q)W (Ty).

On the other hand, since H(t,s) is nonincreasing for the second variable by
(Hsy), we get

S

T
/ l)\C’a H{t, s)p(s)q(s)l/(a“) Mf(s)o‘/(aﬂ) -V, 5)2} ds

T
< H(t,a) AC4 p(s)g(s)V/ (D) ?@f(s)a/(aﬂ) ds.

a S

Thus (15) is reduced to

/ | [AC& Ht, s)p(s)g(e)/+) 2 pgjartary _y (wf] “

S

T

< H(t,a) [ ACy p(s)g(s)"/ (> ??f@“/(“*” ds+W(T2)},

a

which contradicts the equality (1). Thus (P;) is oscillatory. In the case of z(t) <
0 for t > Ty, we put y(t) = —z(t) and take (A2) into account. Then y(¢) is a
0

positive solution of (p(t)y'(t))I+q(t)'y(¢(t))|a+1sgn y(o(t))+ f(t) sgny(t) = 0.

By means of the similar argument we reach the same conclusion. O

Corollary 4. Let the conditions in Theorem 3 be satisfied. Assume that there
exists a positive function p(t) € C*([a, 00)) such that

(16) nmsupm;_a—) / H(t, $)p(s)q(s) =

t—o0

and

. N p(s) ’
(17 hgri)solipm/a p(s)p(s) [h(t,s) =) H(t,s)| ds< oo

are valid. Then the equation (Py) is oscillatory.
If we choose several appropriate functions H (t,s) and h(t,s) we can obtain

the various results from Theorem 3. Consider, for example, H(t,s) = (t —
)", n>2, (¢,5) € D. Then h(t,s) = n(t—s)"~2/2 and \/H(t,s) = (t—s)"/2.
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Corollary 5. Under the conditions in Theorem 3, if there exists a positive
function p(t) € C([a, o0)) such that for a constant A, 0 < A < 1,

t
lHmsupt™" /
t—o0 a

is valid where C,, is a constant given by (10) and

V(t,5) = S/t~ 5" { ACK. s>J .

Then the equation (Py) is oscillatory.

1

3o (¢ = )" p(s)afo) 75 X ps) et v<t,s>2J ds = oo

Example 1. Consider a differential equation
")+t Yzt — D)*T sgna(t — 1)

18
18) + (47| sin 27t| — ¢~ sin 2nt|**') sgnz(t) =0, ¢> 1.

Put f(t) = (4n?|sin2nt| — ¢t ![sin2nt|*T!). Observe that ¢(t) = ¢t — 1 and
that p(t) = 1 satisfies (H). If we take p(t) = t> and H(t — 5) = (t — 5)? it
follows that V(¢,5) = 2s — t. Moreover f(t) > (47% — 1)|sin 27wt|*H! is valid.
Thus the integrand of (1) for the equation (18) is not less than

K(t —s)%(s — 1)s*/ D gin 275]* — (25 — 1)?,

where K = (412 —1)*/(>*U\C,, C4 is the constant given by (10). Therefore by
means of Lemma 2 and Theorem 3 the differential equation (18) is oscillatory.
We note that z(t) = sin 27t is an oscillatory solution.

Theorem 6. Let the conditions (H), (4;), and
g(t,u) = sgnu- f(t,u) such that for some constant M > 0,
ftw) = i) f2(w), fi(t) 20, f2(w) > M for allt>a and u#0

be satisfied. Assume that there ezists a positive function p(t) € C'([a, o))
such that for A € (0,1)
(19)

(43)

lim sup

t—ro0 H(i,a)/a [’\CasMH(tvs)P(S)q(s)a%Xgi—slfx(s)%“—V(t,s)Q] ds=o0

(a + l)a-i—l }a;ﬂ

aO(

is valid where V(t,s) is given by (2) and Comr = M=i {
Then the equation (Py) is oscillatory.

Proof. We consider a Riccati transform (7). Then
(@)t | [t ) o0\ e L MAWD)
oy D L) gy (WD) ot

is valid. The rest part of proof is same as that of Theorem 3. ]
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Example 2. Consider a delay differential equation

" —1__ . a+l1 _
- e+ 1 T2 |z(t — )| sgn x(t — 7)
: |z(t)|* >
2 (4 — ————— t) =0
+| sin 2¢| < T+ 2] sgnz(t) =0,

where t > 27. We observe that
p(t) = ]-a Q(t) 2 1/27 ¢(t) =t- T, f(tau) = fl(t)f2(u)’

[ul® g

fi(t) =|sin2t >0, fo(u)=4- T+ [ =

Choose p(t) = t* and H(t — s) = (t — s)?. By means of Theorem 6 we have

/

ACaHt, $)p(s)a() 7 2 (5)5% — v, 8)2} &

. 1)ett] =
where A € (0,1) and C = 2a+13557 ) (O‘—Jroﬂ)—

part of the proof of Lemma 2 we can eagily show that the differential equation
(20) is oscillatory. We note that z(t) = sin 2¢ is an oscillatory solution.

. Modifying the minor

The following theorem is obvious from the proof of Theorem 6.

Theorem 7. Let the conditions (H), (A;), and

g(t,u,v) = sgnu- f(t,u,v) such that for some positive constants L, M

(Ag) f(tu,v) 2 () fa(u)fs(v), f(t) 20, folu) 2 L, fs(v) > M
for allt > a,u # 0 and for all v

be satisfied. Assume that there ezists a positive function p(t) € C*([a, 00))
such that for X € (0,1)

1

ACa, L H(t, 5)p(s)q(s) 7+

. 1 ¢
imew 7 |

(21)
) e v

ds =

1
is valid where V(t,s) is given by (2) and Co,p.m = )‘(LM)QLH {(QH)QH }WH '

a®

Then the equation (Pe) is oscillatory.
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Proof. We consider a Riccati transform (7). Then for some A € (0,1)

2(9()™H [t (1), 2'(1)) S0\ ey LMAW)
(2O L0 o (320) i + 220

is valid. The rest part of proof is same as that of Theorem 3. O

Example 3. Consider a delay differential equation
1+ 2sin®#t a+1

x"+(———-——>xt—2 sgn z(t — 2

2 + sin® nt 2t =D sen z(t - 2)

1+2z(t)° )2

+ sgnx(t) ( ¥ o)
20 + w2 cos? it 10+ (z'(t))?
10+ 72 cos? wt 20+ (2'(t))?

(22) ——5|sin ﬂt)“) | sin 7rt|

=0,
where t > b > 2. We observe that p(t) = 1, ¢(t) = Ljfs—‘“fné‘yft—t > 5, o(t)=t—2
and f(t) = | sin ] 1—81‘—;'—2—%% > |sinnt], f2(u) = w2 g—ﬁ%ﬁ—lsmwﬂ“ > r2-2,
fa(v) = ;8122 > 5. Thus if we choose p(t) = t*, H(t,s) = (t—s)? the integrand

of (21) is not less than
K(t - 5)%s(s — 2)|sinws]®/ (@) _ (25 — 1)2

where K = (12 -2)2/(e+*1)C, /2, C,, is the constant given by (10). By Lemma 2
and Theorem 3 the differential equation (22) is oscillatory. We note that z(t) =
sin 7t is an oscillatory solution.

Put ¢(t) = t. The differential equation (P;) is then reduced to (F;). By
means of Theorem 3 we obtain the following:

Theorem 8. Let the conditions in Theorem 3 be satisfied. Assume that there
exists a positive function p(t) € C'([a, 00)) such that for A € (0,1)

1
limsu
troo” H(t,0)

is valid where V (t,s) and C, is given by (2) and (10), respectively. Then the
differential equation (Ps) is oscillatory.

/ [@H(t,s)p(s)q(s)#f(sﬁ—V<t,s>2 ds = oo

Corollary 9. Let the conditions in Theorem 8 be satisfied. If there exists a
positive function p(t) € C'([a, 00)) such that

(23) hggpm)/ (t, $)p(s)q(s) 75 £()7F7 ds = oo

and (17) are valid, then the equation (P3) is oscillatory.

The next theorem is a comparison theorem with Theorem 3.
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Theorem 10. Let the conditions (A1), (A2), and (H) be satisfied. Consider
an equation

(Pr) [P ()] + Q()le(d(t)|* sgnz(¢(1)) + F(1) sgna(t) = 0
satisfying that for all t > a
p(t) =2 P(t) >0, q(t) <Q(), [f(t) < F().

Assume that there ezists a positive function p(t) € C'([a, 00)) such that (1)
and (2) are valid. Then the equation (Py) is oscillatory.

Proof. By (H) we have [~ du = co. From (1) and (2) it follows. a

1
P(u)
Remark. In Theorem 10 let the conditions (A4;), (A3), and (H) be satisfied. we
reach then the same conclusion provided f(¢), F(t) are replaced with f(¢,u),
F(t,u), respectively, such that F(t,u) = F\(¢t)F>(u), Fi(t) > 0, Fo(u) > L for
some L > 0 and f(t,u) < F(t,u) for all ¢t and u.

Example 4. Consider a differential equation

!
(24) [t1/3 x'(t)] +t72]2()|° ! sgna(t) + tet sgna(t) =0, > 1.

Put f(t) = te'". Observe that p(t) = t'/3, g(t) =t~2 and f(t) > 1 for t > 1. It
is obvious that p(t) satisfies (H). On the other hand, we have

/ q(s)o(s) ds = g/ [3_4/3 — a3 3_2] ds < o0.

Therefore the differential equation [t1/% 2'(t)]" + ¢~2|z(t)|**" sgnz(t) = 0 is
nonoscillatory. Choose H(t,s) = (t — s)? and p(s) = s° so that § > o771 Here
the value of ¢ is determined later. Since then

/ " p(s)a(s)7 ds = oo

it follows by Lemma, [15] that

. 1 t 9 Ll

lim sup G—ap / (t —s)"p(s)q(s) =T ds = o0
and so (23) is valid. Now we calculate the integrand of (17). We note that the
integrand of (17) is both positive and equal to

{(2+60)% 8% — 25(2 + 6)ts + 6%t} 557573,
Thus the left side of (17) equals
(2+0)*  26(2+4) N 62 t5+4/3
§+4/3  §+1/3 1 6-2/3[ (t—a)?

_ {(2+5)2a6+4/3 2024 8)atH 5202 tQ} 1
(

lim

t—o0

(25)

5+4/3 s+13 T2 i—ar]|
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According to a, if we take ¢ with i—;—‘; < 4§ < 2/3, for example § = 1/3 when
a = 2, (25) is finite. The differential equation (24} is therefore oscillatory. So
the oscillatory property of (25) under (H) is determined by a suitable choice

of p(t).

The following is an extension of Theorem 6. Consider the differential equa-
tion (P;) and assume that the function f(t,u) satisfies

/ g(t,u) =sgnu- f(t, u) such that for some positive constant M,
(43) Flt,u) = fi(t) foluw), fi(t) >0, and fo(u) > M|ul’ with 8 < 1.

Theorem 11. Let the conditions ( ), (A1), and (A5) be satisfied. Assume
that there exists a positive function p(t) € C'([a, o)) such that for X € (0,1)

t—o0

(26) e
X (@) ' fi(s)s=51 — V(t»5)2] ds = o0

‘ 1 .
llmsupm/ l:ca,B,AH(t,S)p(S)Q(S)"—B+1

S

. . — .y a— (a+1)(1-8)
is valid where Co g = 724 (1(;’) T e S and Vit s)

is given by (2). Then the equation (P1) is oscillatory.

Proof. We may assume that z(t) > 0 for ¢ > Tp for some Ty. Now we consider
a Riccati transform given by (7). Using Lemma 1 with

ot % — B-1 t x(t Z‘:%‘.;._l

X = [a(9) (&;@) (1), ¥ = [ﬂ B)z(t)> 1 £(t,z(t))
a

and taking (A%) into account we can derive then the inequality

o1
o) (V) a0y + 20 fitat0)

(a+1)(1—-8)

> Ca,d,AQ(t)ﬁ% (Q%Q) o fi(t)s=5+T.

The rest part of proof is same as that of Theorem 3. O
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