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THE VALUES OF AN EULER SUM AT THE NEGATIVE
INTEGERS AND A RELATION TO A CERTAIN
CONVOLUTION OF BERNOULLI NUMBERS

Kuristo N. BovyapzHiEv, H. GOPALKRISHNA GADIYAR, AND R. PADMA

ABsTRACT. The paper deals with the values at the negative integers of
a certain Dirichlet series related to the Riemann zeta function and with
the expression of these values in terms of Bernoulli numbers.

1. Introduction

We consider the function
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are the Harmonic numbers and Re s > 1. The function h(s) was studied by
many authors, starting with Euler, who evaluated this series in a closed form
when s = k is a positive integer. An elementary derivation of Euler’s formula
can be found, for instance, in [3]. For general s this function was investigated
by Apostol-Vu [1] and Matsuoka [5], who provided an analytic extension to all
complex numbers and discussed its values and poles at the negative integers.
In this note we shall find a relation between the values h(1 — n) and the
numbers A,, n = 1,2,..., defined as the convolution
B(k) B(j)

o k=1,2,...5=0,1,...,

© A= 2 g

k+j=n

where B(n) = B, are the Bernoulli numbers for n # 1 and B(1) = - B; = }.

Thus
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The notation B(n) is used here in order to avoid the negative sign in B; and
thus make possible the representation (4). We have also the expansion

(5) log <ezz—_1) = i %(Enz z".

The product of the functions in (4) and (5) is the generating function of the
numbers A,,

z€* e” —1 > n
(6) ez_110g< . )_;Anz.

The relation between A, and the values of h(s) is based on the evaluation of
the following integral

™ Fs) = ra —.s) /L z*le? log <ezz— 1> dr

2mi ez —1

where L is the Hankel contour consisting of three parts: L = L_ UL U L,
with I_the “lower side” (i.e., arg(z) = —n) of the ray (—oo, —¢),e > 0, traced
left to right, and I, the “upper side” (arg(z) = #) of this ray traced right to
left. Finally, L. = {# = ee?® : —7 < 8 < 7} is a small circle traced counter-
clockwise and connecting the two sides of the ray. This contour was used, for
instance, in [2].

We note that convolutions like (3) appear in the Matiyasevich version of
Miki’s identity - see [6]; see also Yu. Matiyasevich, Identities with Bernoulli
numbers, http://logic.pdmi.ras.ru/~yumat/Journal/Bernoulli/bernulli.htm

General reference for the Bernoulli numbers, the Riemann-zeta function, and
the Gamma and digamma functions is [7].

2. Main results

The main results of this article are given in the following theorem and the
three corollaries.

Theorem 1. For Re s > 1,

(8) F(s) = h(s) = ((s + 1) +(s){(s) + ¢'(s),

where ((s) is the Riemann-zeta function and ¥ (s) = IV(s)/I(s) is the digamma
function.

As F(s)/T'(1 - s) is an entire function (from (7)), this provides an extension
of the right hand side in (8) to all complex s.

The proof of the theorem is given in Section 3.

It is easy to see that when s is a negative integer or zero, the integration
in (7) can be reduced to L. only, as the integrals on Ly and L_ cancel each
other. This way for the coefficients A4, of the Taylor series (6) we have

9) (n—1D! A, =F(1-n)
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for n = 1,2,.... We shall evaluate the right hand side of (8) when s =1 —n
by considering the three cases: n > 1 odd, n = 1, and n even. The results
are organized in three corollaries. Before listing these corollaries, we recall two

properties of the Riemann zeta-function. For m = 1,2,..., {((—2m) = 0 and
((1-2m) = ~Ba=.

We first consider the case when n is odd.

Corollary 1. Letn =2m+1, m > 0. Then

1 1
~(14+ —) Bom -
2(+%ﬂ&

Proof. From (9) we have (2m)! Aam+1 = F(~2m). In order to evaluate F'(—2m)
we use the well-known property of the digamma function

(10) (2m)!A2m+1 = h(——Qm) — C(l - 2771) =

(11) Y(s) =¢(l —s) —mcotms

to write

(12) $(s)C(s) = ¥(1 = 8)((s) = ((s)m cot 7s.
Now, for s = —2m we have ¥(1 + 2m){(~2m) = 0 and
(13) C(s)meotms|,_ o, = (—=2m).
This follows from the Taylor expansion around s = —2m,

(14) ¢(s)mcotws = '(—2m) + %C"(—Qm)(s +2m) + O((s +2m)?).

Thus from (8) we find

(15) F(-2m) = h(-2m) — {(1 — 2m).
The values h(—2m) were computed by Matsuoka [5] as
Bom Bom
h(—2m) = ——2m | B
(16) (—2m) I + =3

(Note that Matsuoka worked with the function f(s) = h(s) ~((s+1)). There-
fore, equation (10) follows from (15) and (16).

h(—2m) was also evaluated in [1], but incompletely (missing the second term
on the right hand side in (16)). O

Now let us consider the case s = 0 in (8), that is, n = 1 in (9).

Corollary 2. In a neighborhood of zero,
1 1
(17) h(S) = '2—3 + '2—(1 + ’}’) + O(S),

where v = —(1) 1s the Fuler constant.
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Proof. As found in [1] and [5], the function h(s) has a simple pole at s = 0
with residue 3. In order to establish (17) we need to evaluate h(s) — 5 at zero.
The functions ((s+1) and % (s){(s) have residues 1 and § respectively, at zero,
and so the function

1

(18) (s +1) = 95)Cs) — 5

does not have a pole at s = 0. Moreover, one easily finds that around s = 0
1

(19) (s +1) =1h(s)C(s) — 5= = 2 +¢'(0) + Os).

Next we rewrite (8) in the form

1 1

(20) h(s) = 5z = F(s) + (((s +1) =9 (s)C(s) = 5) = ('(s)

and also compute the coefficient 4; = £ = F(0) from (3). From (19) and (20)
we find

e (1) 32) Lo = 33+
which proves (17). a

Finally, we compute F(1 —n) for n = 2m.

Corollary 3. Form = 2,3,..., in a neighborhood of s = 1 — 2m the function
h(s) is represented as

(22) h(s) = % - (2m = 1)! Agm —b(2m)C(1 = 2m) + O(s + 2m — 1),
and in a neighborhood of s = —1,
(23) hs) = ———— 2+ L L 0(s +1).

T12(s+1) 8 12

Proof. Apostol-Vu [1] and Matsuoka [5] showed that the function h(s) has
simple poles at the negative odd integers s = 1 — 2m with residues ¢(1 —
2m). The same is true for the function {(s)r cot ws, as follows from the Taylor
expansion at s = 1 — 2m,

(24)  ((s)mcotms = (1 —2m) 7+ ¢'(1-2m)+O(s +2m — 1).

s+ 2m —
Using (12) in (8), we obtain the representation

(25) h(s) = ((s)mcotms + F(s) + ((s + 1) — (1 — 5)¢(s) — ¢'(s),
and substituting (24) in this, we get

) = 22— )+ (s 1) - w1 - 5)C(o)

(26) ={(s)+ 1 -2m)+0(s+2m —1).
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Now, evaluating both sides of (26) at s =1 — 2m,
hs) - C(l —2m)
5+2m ~ 1 s=1—2m
(27) = F(1-2m)+¢(2-2m)-v(2m){(1~2m)+O(s+2m-1)
and as F(1—2m) = (2m - 1)! A2, and (2 — 2m) = 0, we obtain (22).
When m = 1, we have ((2 —2m) = {(0) = -1, {(-1) = — 15, ¥(2) = 1 -7,
and by direct computation from (3), A» = . Thus (23) follows from (27). O

3. Proof of Theorem 1

Here we evaluate the integral in (7)

1 z57le e’ —1
(28) I(s) = 27ri/L prawc) log( -~ ) dz,

where the contour L is as described in Section 1. We choose Re s > 1 and set
¢ — 0. The integral over . becomes zero, as the function

(29) 2e - log (”;1)

eZ

is holomorphic in & neighborhood of zero. Noticing that z =z e ™ on [_ and
z=xze" on L4, we find that

e=mis 0 z5=1 -2 1—e %
_I(s) = d
(5) 2mi /oo 1-e" log ( z > *

+67ris /00 s~ le—< 1 1—e* d
21t Jg l1—e7% °8 x ‘

sinws [ x5 le " 1—-e%

30 = 1 dz.
(30) T /0 ]—e* o8 < z ) *
Next

Oows—l e 2 1 —e T

1 ;
/ 1—e+ 8 ( x ) du
¢
:L.s—l e % . xs—l

(31) = /t—e—_Tlog(l~e )dm—/ew—l logz dx.

0 0

We shall evaluate the two integrals on the right hand side in (31) one by one.
First we use the expansion

-

(32) Eg(_li_l — f: Hpe ™

l—e*
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(see [4], (7.57), p. 352). Multiplying this by z°~!e™® and integrating from
zero to infinity, we find that

O L8—1 ,—a St o0
/0 mT_—:_-— log(l—e®)dz = — ZH"/O o=l e~ (e g
= T Z (n + 1}
(33) = —F(S}(h( ) —¢(s+1)).
Next, differentiating for s the representation
i’y ws-—l
(34) rs)gs) = [ S
er —1
0
we obtain

(33 [ Zglogs do =T(EK(6) + T () = TEWE(E) +(4)
0
From (31), (33) and (35)

7 1 - __p—T
(36) / g (1) e = D))~ s+ 6)

and therefore,

(57)  T(s) = T(s)sin(ms)(hls) ~ (s + 1) + $(5)C(5) +¢'(5):
Finally, (8) follows from here in view of the identity

(38) T(s)I(1 - 8) = —

sinws’
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