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SASAKIAN MANIFOLDS WITH QUASI-CONFORMAL
CURVATURE TENSOR

Ubay CHAND DE, JAE Box Jun, AND ABUL KaLaM Gazl

ABsTRACT. The object of the paper is to study a Sasakian manifold with
quasi-conformal curvature tensor.

1. Introduction

The notion of the quasi-conformal curvature tensor was given by Yano and
Sawaki [11]. According to them a quasi-conformal curvature tensor C'is defined
by

(X,Y)Z = aR(X,Y)Z+b[S(Y,Z)X - S(X,2)Y +g(V,Z)QX

é
(L.1) —g(X, Z2)QY] - ~[—= + 2[g(¥, Z)X ~ g(X, Z)Y],

where ¢ and b are constants and R, S, () and r are the Riemannian curvature
tensor of type (1,3), the Ricci tensor of type (0,2), the Ricci operator defined
by g(Q@X,Y) = S(X,Y) and the scalar curvature of the manifold respectively.
If a=1and b= ——15, then (1.1) takes the form
- 1

CX, VY2 = RX,)Y)Z- m{S(Y, )X -8(X,2)Y +g9(Y,2)QX
r
-9(X, 2) QY]+ ————

9(X, Z)QY] + oD =)

C(X,Y)Z,

where C is the conformal curvature tensor [4]. Thus the conformal curvature
tensor C is a particular case of the tensor C. For this reason C is called the
quasi-conformal curvature tensor. A manifold (M™, g){n > 3) shall be called
quasi-conformally flat if the quasi-conformal curvature tensor C =0 Itis
known [1] that the quasi-conformally flat manifold is either conformally fiat
if @ # 0 or, Einstein if a = 0 and b # 0. Since, they give no restrictions for
manifolds if a = 0 and b = 0, it is essential for us to consider the case of a # 0
or b # 0.

(Y. Z2)X - g(X, Z)Y]
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An almost contact metric manifold is said to be an n-Einstein manifold if
the Ricci tensor S satisfies the condition

(1.2) S(X,Y) = ag(X,Y) + n(X)n(Y),

where a, b are certain scalars. It is known [10] that in a Sasakian manifold a, b
are constants. A Riemannian or a semi-Riemannian manifold is said to be semi-
symmetric [8] if R(X,Y).R = 0, where R is the Riemannian curvature tensor
and R(X,Y) is considered as a derivation of the tensor algebra at each point
of the manifold for tangent vectors X,Y. If a Riemannian manifold satisfies
R(X,Y)-C = 0, where C is the quasi-conformal curvature tensor, then the
manifold is said to be quasi-conformally semi-symmetric manifold.

It is known [5] that a conformally flat Sasakian manifold is of constant curva-
ture and a Weyl semi-symmetric Sasakian manifold is locally isometric with the
unit sphere S™(1) [3]. In the present paper we have studied quasi-conformally
flat and quasi-conformally semi-symmetric Sasakian manifolds. At first we
prove that a Sasakian manifold is quasi-conformally flat if and only if it is lo-
cally isometric with the unit sphere S™(1). Also it is proved that a compact ori-
entable quasi-conformally flat Sasakian manifold can not admit a non-isometric
conformal transformation. Finally, we have shown that a Sasakian manifold is
quasi-conformally flat if and only if it is quasi-conformally semi-symmetric.

2. Preliminaries

Let S and r denote respectively the Ricci tensor of type (0,2) and the scalar
curvature in a Sasakian manifold (M™,g). It is known that in a Sasakian
manifold M™, the following relations hold [6], [2], [7]:

(2.1) $(£) =0

(2.2) n€) =1

(2.3) #*X = - X +n(X)¢

(24) 9(¢X,8Y) = g(X,Y) — n(X)n(Y)
(2.5) 9(&, X) = n(X)

(2.6) Vxé=—¢pX

(2.7) S(X,8) = (n—1)n(X)

(2.8) g(R(§ XY, §) = g(X,Y) — n(X)n(Y)
(2.9) R(§X)E =X +n(X)¢

(2.10) g(R(X,Y)E, Z) = g(X, Z)n(Y) — g(Y, Z)n(X)
(

2.11) and (Vx¢)(Y) = R({, X)Y

for any vector fields X,Y.
The above results will be used in the next section.
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3. n-Einstein Sasakian manifold

Let 1% be the square of the length of the Ricci tensor, then
(3.1) 17 =" 8(Qei es),
=1

where () is the symmetric endomorphism of the tangent space at a point cor-
responding to the Ricci tensor S and {e;}, ¢ = 1,2,...,n, is an orthonormal
basis of the tangent space at any point. Now putting X =Y = {e;} in (1.2),
and taking summation over 4,1 <i < n, we get

(3.2) r=na+b,

where r is the scalar curvature. Again from (1.2) we obtain
(3.3) S, =a+b.

Now we get from (1.2) with the help of (3.1), (3.2) and (3.3)
(3.4) P=mn-1a4+@+b)?>

Since the scalars a and b are constants of an 7-Einstein Sasakian manifold, it
follows from (3.2) that r is constant and so also is the length of the Ricci tensor.
Next we suppose that the manifold under consideration admits a non-isometric
conformal motion generated by a vector field X. Since I? is constant, it follows
that

(3.5) Lxl?=0,

where Lx denotes Lie-differentiation with respect to X. Now it is known
[9] that if a compact Reimannian manifold M™(n > 2) with constant scalar
curvature admits an infinitesimal nonisometric conformal transformation X
such that Lx!?> = 0, then M is isometric to a sphere. But a sphere is an
Einstein manifold. Hence we can state the following:

Theorem 3.1. A compact orientable n-Finstein Sasakian manifold does not
admit a nonisometric conformal transformation.

4. Quasi-conformally flat Sasakian manifold

If the manifold under consideration is quasi-conformally flat, then we have
from (1.1)
(4.1)

R(X,Y,Z,W) = YIS(X, 2)g(Y, W) - S(¥, Z)g(X, W)
+ S(Y,W)g(X, Z) — S(X, W)g(Y, Z)]

+ = 2b][g(Y, Z)g(X, W) — g(X, Z)g(Y, W),

na'n—1

where a and b are constants and 'R(X,Y, Z, W) = g(R(X,Y)Z,W).
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Now putting Z = £ in (4.1) and using (2.2), (2.5), (2.7) and (2.10) we get
g(Xa W)TI(Y) - g(Y> W)U(X)

= [0 = 1)g(Y, W)n(X) ~ (n ~ Dg(X, W)n(¥)

(4.2) .

+ S(Y, W)n(X) — S(X,W)n(Y)] + %[n 1

+ 2b][g(X, Wn(Y) — g(Y, W)n(X)).
Again putting X = £ in (4.2) and using (2.2), (2.5) and (2.7) it follows that

(4.3) S(Y,W) = Ag(Y,W) + Bn(Y)n(W),
where

r o oa a
(4.4) A = [Fn-D+ (=7 +2) - 7]
and

Here A+ B = (n — 1). This leads to the following theorem:

Theorem 4.1. A quasi-conformally flat Sasakian manifold is an n-Einstein
manifold.

Now from Theorem 3.1 we can state the following:

Corollary 4.1. A compact orientable quasi-conformally flat Sasakian manifold
can not admit a nonisometric conformal transformation.

Putting Y = W = {e;} in (4.3) and taking summation over ¢, 1 <7 <mn, we
get

(4.6) r=nA+ B.
Now with the help of (4.4) and (4.5) the equation (4.6) gives
(4.7) [(n—2)+ %][% +(1-n)=0.
Hence either
(4.8) b= 5 _a_ =
or,
(4.9) r=n(n-1).
Ifo= (2—‘_1;7 then putting it into (1.1) we get
(4.10) C(X,Y)Z =aC(X,Y)Z,

where C(X,Y)Z denotes the Weyl conformal curvature tensor. So the quasi-
conformally flatness and conformally flatness are equivalent in this case. A
conformally flat Sasakian manifold (M™, g)(n > 5) is of constant curvature.
But a manifold of constant curvature is conformally flat. Hence a Sasakian
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manifold is conformally flat if and only if it is locally isometric with a unit
sphere S™(1). So in this case M™ is locally isometric to the unit sphere.
If r = n(n — 1), then from (4.3), (4.4) and (4.5) we obtain
(4.11) S(Y, W) =(n-1)g(Y,W).
This implies that M ™ is an Einstein manifold. So putting (4.8), (4.9) and (4.11)
into (4.1) we obtain
R(X.)Y,Z,W) = g(X,W)g(Y, Z) — g(X, Z)g(Y, W).

Then M™ is of constant curvature +1. Hence it is locally isometric with the
unit sphere S™(1). If M™ is locally isometric to the unit sphere S™(1) then it
is easy to see that M" is quasi-conformally flat. This leads to the following
theorem:

Theorem 4.2. Let (M™,g)(n > 5) be a Sasakian manifold. Then M™ is
quasi-conformally flat if and only if M™ is locally isometric to the unit sphere
Sn(1).
5. Sasakian manifolds satisfying R(X,Y)-C =0
In this section we consider a Sasakian manifold M™ satisfying the condition
(5.1) R(X,Y)-C =0.
Then we obtain from (1.1) by using (2.5), (2.7) and (2.10)

n(C(X,Y)Z) = [a+b(n —1) = ~(—— + 2b)][g(Y, Z)n(X)

(5.2) n'n—1
— 9(X, Z)n(YV)] +b[S(Y, Z)n(X) = S(X, Z)n(Y)].

For Z = &, we get from (5.2)

(5.3) n(C(X,Y)€) = 0.

Again putting X = £ in (5.2) we get

r a

Gay NCEND =latdn =)= DT+ 21 2)

=Y )n(2)] +b[S(Y, Z) — (n = 1)n(Y)n(Z2)].

In virtue of (5.1) we get

RX,Y)C(U, VYW - C(R(X, YU, V)W

-CU,RX,Y)V)W — C(U,V)R(X, Y)W =0,

which implies that
'CU,V,W,Y) — (Y )(CU,VIW) + n(U)n(C(Y, V)W)

(56)  +n(V)n(CWU, )W) +n(W)n(CU,V)Y) = g(¥,U)n(C(E V)W)
— gV, VInCU, W) — g(Y,W)n(C(U,V)€) = 0,

where 'C(U,V,W,Y) = g(C(U,V)W,Y).

(5.5)
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Putting U =Y in (5.6) and with the help of (5.2) and (5.3) we get
'CU,V,W,U) + n(W)n(C(U,V)U)
— g(U,UN(CE V)W) = g(U,Vn(C (U, )W) = 0.

Now putting U = {e;}, where {¢;},4 = 1,2,...,n, be an orthonormal basis
of the tangent space at each point of the manifold, in (5.7) and taking the
summation over i, 1 <1 < n, and using (5.2), (5.4) we get

(5.7)

(5.8) SV, W) = Ag(V, W) + un(V)n(W),
where

(5.9) )\ —br + (n —alll;—i-(n— l)a
and

(5.10) b= W

Hence (5.8) leads to the following theorem:

Theorem 5.1. A quasi-conformally semi-symmetric Sasakian manifold is an
n-Einstein manifold.
Now contracting (5.8) we get,
(5.11) r=nA\+ p.
By (5.9) and (5.10) the equation (5.11) gives
[a+ (n—2)bj[r —n(n—-1)]=0.

Therefore, either
a

(5.12) b
r=n(n-—1).

From (5.9) and (5.12) we obtain

(5.13) A=(n—-1).

By (5.10) and (5.12) we get

(5.14) | p=0.

So, from (5.8), (5.13) and (5.14) we have

(5.15) S(V,W) = (n—1)g(V,W).

Therefore, M™ is an Einstein manifold. Now with the help of (5.12) and (5.15)
the equations (5.2) and (5.4) imply that

(5.16) n(CU,VIW) =0

and

(5.17) n(C(E,U)V) =0,
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respectively. So using (5.16), (5.17) and (5.3) into the equation (5.6) we get
(5.18) 'CU,V,W,Y) = 0.

Therefore, M™ is quasi-conformally flat. Then it is trivially quasi-conformally
semi-symmetric. So we have the following result:

Theorem 5.2. Let (M™,g)(n > 3) be a Sasakian manifold. Then M™ is
quasi-conformally flat if and only if it is quasi-conformally semi-symmetric.
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