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EXPLICIT SOBOLEV ESTIMATES FOR THE
CAUCHY-RIEMANN EQUATION ON PARAMETERS

SANGHYUN CHO{ AND JAESEO CHOIf

ABSTRACT. Let M be a smoothly bounded pseudoconvex complex man-
ifold with a family of almost complex structures {£7},¢;, 0 € I, which
extend smoothly up to bM, the boundary of M, and assume that there is
A € C°(bM) which is strictly subharmonic with respect to the structure
£%), s in any direction where the Levi-form vanishes on bAf. We obtain
explicit estimates for the 8-Neumann problem in Sobolev spaces both in
space and parameter variables. Also we get a similar result when M is
strongly pseudoconvex.

1. Introduction

Let M be a compact complex manifold with C* boundary and let {L"}¢f
be a family of complex structures on M where, in the sequel, we let I C R' be
an interval containing 0.

Definition 1.1. {£7}.¢; is said to be a smooth family of diffeomorphic com-
plex structures on M if there is a family of diffeomorphisms d, : M — M,
7 € I such that

(1) do = Identity,

(2) (d)o(L7|,) = L0, for each p € M and,

(3) dr — do as 7 -+ 0 in C*-topology.

Similarly, we can define a smooth family of diffeomorphic (pseudoconvex)
complex manifolds.

Remark 1.2. (1) If (M,,8");¢s is a smooth family of diffeomorphic complex
manifolds with diffeomorphisms F; : M, — My, then {£7 :=dF,(87)}.crisa
family of smoothly varying almost complex structures on fixed manifold Mp.

(2) In [4, 5, 7], the first author constructed a smooth family of diffeomorphic
pseudoconvex complex manifolds when M, is a compact pseadoconvex complex
manifold of finite 1-type.
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Let {L7};¢1 be a smooth family of diffeomorphic complex structures on
M which extend smoothly to bM, the boundary of M, and assume that M
is pseudoconvex with respect to each structure L7, 7 € I, and that there is
a function A; € C*(bM) which is strictly subharmonic with respect to the
structure £%;5s in any direction where the Levi-form vanishes on bM. If we
set Ay = A, + &r, then it follows that 9Xa(L,L) > 0 on bM provided 3 is
sufficiently large. Set A = sy + e"/%. Then A$ is strictly plurisubharmonic
near bM with respect to the structure £0 provided 6 > 0 is sufficiently small
and s is sufficiently large. Fix ¢ and s satisfying this condition and set A = A3.
Then A is strictly plurisubharmonic near b3 . Using a convex function, it is
standard to modify A so that A is smooth plurisubharmonic on M and if we
set M, = {2 € M: X\z) < p}, u€R, then there are g < 1 < p2 such that
M,, CC M,, CC M,, CC M and X is strictly plurisubharmonic on M — M, .

Let 1 be a smooth nondecreasing convex function such that (7) = 0 for 7 <
fiz, (1) > 0 for 7 > pp. Set xor = tA+ s3p(A). We then define L7, (M, Xs,0)
as the space of all measurable forms in M of type {(p, q), satisfying

1712, = /M eV < oo,

where dV is the volume form induced by the structure £o. Then for a suffi-
ciently large ¢ and s, it follows from Proposition 2.2.5 in [1] that

(1L.1) Ifllee S CUT s + 1S fllse)

if f € Dp«NDg, where Dp» and Dg denote the domain of 7 and S respectively,
and where T and S are the Hilbert space extension of & on (p,q—1) and (p, ¢)
forms respectively, and T denotes the Hilbert space adjoint of T. In the
estimates of higher order Sobolev space, s will be fixed while ¢ varies. Let us
fix s = so so that (1.1) holds for all sufficiently large ¢ and denote the Sobolev
norm of order m with respect to the weight e Xso.2 by || - [l;m,e-

Let 8, be the Cauchy Riemann operator with respect to the structure £7,
and assume that {a,},cr is a smooth family of 9,-closed (p,q) forms on M
with respect to £7, and a, € (H?9)* where H? is the d,-cohomology group
for each 7 € I. Then from the Kohn’s solution of 9-Neumann problem with
weights, for each m > 0, there are T,, > 0, and the corresponding canonical
solution u™ of 8,u, = -, with respect to the structure £7, satisfying

(1.2) e k.t < Con (7, B)ll 07 ||om 1

for t > Tpn.

However in many applications of the estimate {1.2), we need to know ex-
plicitly how C,,(,t) depends on m, 7 and ¢, as well as the Sobolev estimates
in parameter variable 7 € I. For example, when we study local embedding of
tangential Cauchy Riemann structures, we have to know the precise estimates
for the solutions of Cauchy Riemann equation under the influence the defor-
mation of (almost) complex structures. Also, one approach to solve the local



EXPLICIT SOBOLEV ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION 323

Oy equation is to construct one parameter family of domains and solve 0 equa-
tion on each of these domains and get a precise estimates including parameter
variables.

In [6], the first author showed the continuity of the estimates in space and
parameter variables. However the estimates in [6] are not explicit on # and
loose some extra derivative on space variables as well as in parameter variable.
In the present paper, we estimate explicitly the solutions of (1.2) in Sobolev
spaces both in space and parameter variables. Also, we obtain a similar optimal
result when M is strictly pseudoconvex.

Let {Li,...,L,} C £° be an orthonormal frame of £° on M with a smooth
hermitian metric (, Yo on M. Let d, : M — M, 7 € I, be the family of
diffeomorphisms described in Definition 1.1, and set L} := (d;').Ly € L,
1<k < n,and define {, }; on L™ by

(1.3) (Li, Lj)r = (Li, Ljdo. 1<) k<n.
Then {L£7,{:,*);}rer is a smooth family of hermitian structures on M and
{L7,...,L}} form an orthonormal frame of L7, for each 7 € I. Assume that I

is sufficiently small (so that Proposition 2.5 holds) and let [, m be nonnegative

integers. We denote by Hj (I x M) the Sobolev space of order [ and m in

7 € [ and z € M variables respectively, and denote the norm with weight

e~ ? by || fll,m,» which is induced from the hermitian structure defined in (1.3).

When [ = 0, we simply denote the Sobolev space of order m on M by H,,(M).

We may assume that £7 is smooth in 7 on T by shrinking I if necessary. Let

(i, 7 =1,2,..., N be smooth real valued functions such that Zj\;l §]2 =1, and

the support of each function ¢; is contained in a coordinate neighborhood of
M. In local coordinates 21, zs, . . ., T3,, We write

2n
, 0
L] = j;aw(x,r) G

and define
_ _ N n 2n
(14) 0 =8ulm=sup > > "> Y [DG(aij(z,7) - aii(z, ),
reM |—

1 i=1j=1|al<m

and

n 2n

N k
(1.5) Olem =supsup D" D"N"N" " |DID2(Gayy)l,

7€l 2eM |21 i=1 j=1 5=0 |a|<m

and set |Olo,m = |O|m. Note that |3, 4 ~ 1, independent of 7 € I.
We state our main theorems as follows:

Theorem 1.3. Let {M, L7 }rer be a smooth family of diffeomorphic pseudo-
conver complex structures on M. Suppose that {ar}rer is o family of (p,q)
forms on M such that ar € R(0;) for each T € I. For each nonnegative integer
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m > 0, assume that a, € Hyq3(M) for somev € I and o, € Hp (M) for each
7 € I. Then there are constants Cp, > 0 and T,, > 0, independent of T € 1,
such that if t > T,,, then the canonical solution u, of O,u = ar, T € I, which
is provided by the 8-Neumann problem with weight e~X>0-t | satisfies

llur — yllm,e

< o (llor = aullm s + Blellar — aullo,e + ™ ller — llo,)
+ Com[0r = Bulo (lewllmea,e + [Blmallowllo + 7 llawlo,e)
+ Ciml0r — Oulmasllavllos

(1.6)

Remark 1.4. (1) Theorem 1.3 says that for each v € I, the canonical solution
u, converges to u, in the Sobolev space H,,(M) as 7 — v provided that
a, € Hypy3(M) and a, € Hy, (M) for each 7 € I, and a; = @, in Hy (M) as
T V.

(2) Note that ¢°]8|s,||ar — a,||ss, in the first line of the right hand side
of (1.6) has total order of m = s1 + s + s3, while the remaining error terms
(terms containing |8, — 8,[,) have total order of m 4 4 because of the error
term EY introduced in the proof of Theorem 1.3.

In the sequel, we set U = U(7,z) = U,(z) and a = a(7,z) = a,(z). Also
for each fixed k,m > 0, OU = a should be understood that 0¥™U = a,
for each 7 € I, where "™ denotes the complex Laplacian with respect to
the structure £ with appropriate weight depending on £ and m. For each
nonnegative integers k& and m and for each ¢ > 0, we set

G'(a, k,m)
(17) : 3 m+2k—2r )
= Z Ialk—r,o (||a||r,m+2k~2r,t + (t +|8|k,m+2k—2r) HaHr,O,t).
r=0

Then we get the derivative estimates of the solutions of OU = a with respect
to space as well as parameter variables:

Theorem 1.5. Let {M, L™ }-¢cr and {a:}rcr be as in Theorem 1.3. For each
integers k,m > 0, there are constants Ty, > 0 and Cy m, independent of T € I,
such that for allt > T_m, the Neumann solution U of OU = «, and the canonical
solution u =0 U of du = a satisfy

WUkt + U k=1,me2,6 + 1ulligme + ullki=1,m+2,t < CrmG* (e, kym),
provided o € Hy pyop—2-(I X M), 0 < r <k.

If M is strongly pseudoconvex, we use the stability of the estimates for &
by Green and Krantz [8, 9]. Then we gain some derivatives and (1.6) can be
improved.

Theorem 1.6. Let {M,L"},;c; and {a;}rcr be as in Theorem 1.3 and as-
sume that M is strongly pseudoconvex with respect to L°. Assume that a, €
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Hsyo(M) for some v € I and a, € H,(M) for each 7 € I where s > —1/2.
Then there exist a constant Cs > 0, independent of 7 € I, such that the Neu-
mann solution U, of 0.U, = o, and the canonical solution u, = 5:UT of
O.u=a,, T €I satisfy

”UT -U,

a1 F flur =iy g
S ller —aulls +lsllar = aullo
+ @T - 5uls+zllauHo
+10: — 8. (e llst2 + ’5|s+4f|04u||0) .

(1.8)

For higher order Sobolev estimates, we obtain:

Theorem 1.7. Let {M,L"},¢cr and {a;}rer be as in Theorem 1.6. Then
for each nonnegative integer k, and for each real number s > —1/2, there is
Cr,s > 0 such that the Neumann solution U of BU = a and the canonical

solution u =0 U of Ou = a satisfy

(19) ”Ul|k,3+1 + ”u”k,s+% < Ck,SH(aa k, S)v
provided that a € H, s1p—(I x M), 0 < r <k, where
H{a,k,s)

k
= > [Ole-rollallrsti—r + (18le—rolFlo.sr2rr1 + [0k rsrortr) [dlrproy-
r=0

The annoying factors ||| m+2k—2r¢ and ||@||r s4+x—r in the right hand side
of (1.7) and (1.9) come from by introducing some error terms to estimate the
derivatives of U, with respect to 7 € I variable.

Theorem 1.3-1.7 could be used, for example, in the study of the stability as
well as the continuity properties of the Bergman kernel and invariant metrics,
and the weak extension problem of a given CR-forms on a hypersurface with
the estimates in Sobolev spaces, as well as a local embedding problem of a
given CR manifolds. These problems will be discussed in near future.

2. Stability of the estimates for 8

In this section we get estimates for 9, in Sobolev spaces with respect to the
structure L7, 7 € I, and study how these estimates depend on parameters. For
this purpose, we need to know the estimates with commutators in weighted
spaces. In [3], Catlin, and Cho proved the following interpolation theorems in
weighted spaces.

Proposition 2.1 ([3, Corollary 4.4]). Let u,v € C§(R?). For any non-
negative integer m and for each small 6 > 0,

(2.1) l[wvllm.e S lfullm.elvlo + 8™ fullo.evlm + 6™ |[ullo.elvlo.
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Proposition 2.2 ([3, Corollary 4.5]). Let P be a partial differential operator
of order m > 1 with smooth bounded coefficients. Then for all u,v € CS(R?)
and non-negative integer [,

22) P lule S lullmri-seloh + lullololma + ™+ lullololr.

Proposition 2.3 ([3, Proposition 4.2]). Let u € C§°(R?) and k,m be integers
with 0 < k <m. For any a > 0,

(2.3) ulle S allullme + (a0 + at™ + ¢ lfullo.

Proposition 2.4 ([3, Proposition 4.3)). Let u,v € C°(R?). For any non-
negative integers m, k with 0 < k < m, and for each a > 0,

-k
24)  lullelvlm—r S allullm,evlo +a™ ==F [[ullo,clvlm + at™||ullo[vlo-

We note that the total order of %1 - |,,|| - ||s; satisfies sy 4+ 82 + 83 = m.
Following standard estimates of Hérmander [10] or Catlin [1] or Kohn [11], and
using the estimates (2.1)-(2.4), one obtains the following precise estimates.
One may refer the proof in ([3], Theorem 4.9).

Proposition 2.5. There is a sufficiently small interval I C R! such that for
each non-negative integer m > 0, there exist constants Cn, Ty, > 0, indepen-
dent of T € 1, such that for all t > T,,,, the following estimate holds:

17 Ve + 1107 S e+ 10757 W
< CollOF 7 e + Con(1B17 et IO7 715, + 2™ O F711G,2)

for fT € Dom(@j) N C=(M), where 007 denotes the complex Laplacian with
respect to the complex structure L7 with weight e™Xso:t,

(2.5)

By the method of elliptic regularization it follows that if Ofu, € Hn (M),
then u, € H,(M) and the estimate (2.5) holds independent of 7 € I and this
proves the stability of the estimate for 8 in Sobolev spaces.

Now if a; € AP and 8-a; = 0, @, L HP4, then u, = EI,TNﬁaT is the
unique solution of 8 ,u = @, orthogonal to ker(d,,), where 8;, and N
denote the 8 and the Neumann operator with respect to £™ with weight e~ Xso-¢.
Therefore if U, = Nta, is the Neumann solution of 0Ot U, = a., then it follows
from (2.5) that U, and the canonical solution u, = EZ,TUT satisfy the following
estimates :

(2.6) 1Urllm,e < Con (lletrllm,t + [Blma1llerlloe + 7 Hlezllor)

(2.7) lur|lm,e < Crm (“aTHm,t + Ig'm-l—lHaT”O,t + tm“aT“O,t) )

where Cy,, does not depend on 7 € I.
When M is strongly pseudoconvex, we use the estimates in Lemma 2.4 with
t = 0 and follow standard estimates as in [11]. Then the solutions U, = N;a;



EXPLICIT SOBOLEV ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION 327

and u, = E:NTQT satisfy the following estimates:

(2.8) 1Urlliry + lurlle < C (llar ey, + Bl llaell)
foreach k =1,2,..., and
(29) Ul + lturllo < Collarll_y,

where Cj does not depend on 7 € I. By the definition of the space H_, we
have

(2.10) (7, g)l < ikllsligll-s

for any s < § where h € H, and g € H_,. Let [s] be the smallest integer bigger
than or equal to s. Then it follows from (2.8)-(2.10), and the interpolation
inequality in Sobolev spaces, that

@11)  [Uelloss + lurllay < Co (lortls + Bliarliarlly )
for any s > —1 because [0]1 4 ~ 1.

3. Sobolev estimates on parameters on weakly pseudoconvex
domains

In this section we estimate the solutions of §, on parameter variables. In
the sequel, we let A < B mean that there is an independent constant Cp,
(depending only on m and independent of ¢ and parameter 7) such that A <
CmB.

Let (M,L"),e; and M,, € M,, € M,, € M be as in Section 1. Let
0 < h < 1 be a smooth functions such that h = 1 on M — MY, and h =0
on M;. We may assume that M C M’ and M = {z € M' : r(z) < 0}
where r € C®°(M') is a real valued function such that |dr] = 1 on bM. Set
Ly =£ —iJ.(£) and £, = {L" € L7 : L"r = 0}, where J, denotes the

complex structure on L7, 7 € .

Lemma 3.1 ([6, Lemma 3.1)). There ezists a bundle isomorphism B, : L —
Z° such that BT(?IP) = Zolp for every p € M, B, depends smoothly on T,
B.(I1) =TI, and B,(L,,,) = Ly, on bM.

Let A2? denote the space of all smooth (p, ¢) forms over the complex space

(M,L")r¢1. For a convenience, we will consider only for the case that p = 0

and ¢ = 1. For any U, € A%, define P, : A%' — A" by
(3-1) (P,U-)(X") = Un(B;'X"), X L.

Then P; is a bundle isomorphism which depends smoothly on 7 and it follows,
from (2.1) and (3.1), that

(3.2) I1PGllst < Cs (G ls,e +101:l|Glloe + £°[1Gllo.e)

(3.3) WP Fllse < Cs (1Flls + [01: N1 Fllo,e + 81 Flo,e)
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where C,; does not depend on 7 € I. 3
We use the family {P;}-¢s to change the d-equation on A%! forms into the
family of equations over the same space Ag’l. Consider the family of equations

(3.4) 0.U, =a,, T€I,

where O, = 8,0, + 8,0,, and U,,a, € A%L. Set A, = PO, P, V, = P.U,
and 8, = Pra,. Then each equation in (3.4) is equivalent to the equation:

AV, =8, 7€,

where V., 3, € A8>1, i.e., on the same space Ag’l. By virtue of the estimates in
(2.6), (3.2) and (3.3), one obtains that

1Vellm,t S U llmyt + 18l llU=llo,e + ™ [[Ur lloye
(3.5) Sllerllme + Blmsallarllo +¢™lerllo,e
~ Hﬁfl m,t T lglm-i-l”ﬂ‘rno,t + tm“ﬂTHO,t'

We first prove Theorem 1.3. Let v € I be fixed for a moment. To show
the continuity of the Neumann (or canonical) solution of the 0 equation on
parameter, we try to use the solution of the equation

(36) DT(UT - Uu) =0 =0, — (D‘r - DV)UI/'

Unfortunately U, ¢ Dom(O,) in general and hence (3.6) should be corrected.

Instead of U,, we perturb U; by U, + EY, where E € Ag’l is defined by
@7 ED=L,(.[D)+EWV)B'LL), Lel, rel

Lemma 3.2 ([6, Lemma 3.2]). Let V; € Dom(A;) and V, € Dom(A,). Then
V, —ThEY € Dom(A;) and rhEY € Dom(A,).

From the definition of E¥ in (3.7) and by (2.1)-(2.4) (with a =t™™), (3.3)
and (3.5), one obtains that

1B lm e S Villmetr,e + 8 IValle + 7 [Vl
Sllewllmie + (10lmsa + 7)o |
Similarly, applying (2.1) and (2.4) again, we obtain that
1B = E}lim.t
5 |-8_T - 5VIO (||Vx/||m+1,t + tm”Vu“l,t) + |57 - 5V|m”VVH1,t
S 107 = Bulo (llawllm1,t + 18]ms2llwllo,e + ™ Hawllo,e)

+18- = Oulma1llew o,

(3.8)

0t

(3.9)

Remark 3.3. We note that the total order of t°1|-|,, ||-||ss,¢ is 51+ 52+ 53 = m+1
in (3.8) and (3.9) even though we have |0|m+2 term which is not a major term
in our estimates. These interpolation results occur frequently in the rest of the
estimates in this article.
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Set w? =V, + rhEY € AJ'. Since U, = P;'V, € Dom(d,), it follows that

0 0

P7W,(T,) = Vu(B,L,) = V,(L,) = P,*'Vi(B;'L,) = P, 'V, (L,) = 0

on bM, and hence P71V, € Dom(8.). Therefore we can write
Uy —uy = 0, PV, =8, PV, =0, P (w? — w)
— @, P~ 8. PTYY, — 3. PTIrh(EY — EY).
By applying (2.3), (2.4), (3.3) and (3.9), we obtain that
107 P rh(EY = E)llm.s
SNEY = Efllmt1, + 18l ms t NEY = EYlloe + t" M IEY ~ Eyllo.e
< 10: = Oulo (lawllms2,e + [Blmesliavllos + ™ {lavllo.)

+107 = Oulmrallasllo.c,

(3.10)

(3.11)

and similarly, ||(8)P;t — 8. P71V, || is bounded by the right hand side of
(3.9).

In view of (3.10) and (3.11), it is enough to estimate ||@, P7 " (w% — w)||m.¢
to obtain the estimate of [ju, —uy||m,¢. Let A, be the same differential operator
as A, without boundary conditions, i.e., A, = P;(8,0, + 0,0,)P !, where
O, is the formal adjoint of 8. Set

fr =8, + A rhEL.
Then it follows that
Arw? = A (V, +rhEY) = f2.
By Lemma 3.2 we have w? — w¥, € Dom(A,), and hence
Ar(wf —w)) = Ar(w) —wy) = f2 = [ — (A, = A, )w}
(3.12) = 8- = B, + (A; = A,)rhE;
+A,rh(EY - EY) — (B, — A )wl.

Let RY be the right hand side of (3.12). By virtue of the estimates in (2.7)
and (3.3), for each m > 0, there is a constant T}, > 0 such that if ¢ > T},, then

187 P (W} = w))llma S P Rt + (181 + ™) [P RYJo.e

(313) v i v mi| pv
SRl + 10]m|| R Hlo,e + ™| R o,

Let us estimate | RY|lm.¢. We first recall an interpolation formula in C* norm.
Let B be a bounded convex domain in R?. For any a > 0 and for any integers
0 < k < m, there exists a constant C = C'(k, m,d) such that

(3.14) [Fie S CIFEIl™ < C (alflm+a” 751110

m—
™m
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for f € C™(B). If we apply the interpolation formulas (2.1)-(2.4), (3.14) and
the estimate (3.8), we obtain the following estimates:

1(Br = Bu)rhEY s
S 10 = Bulo IE llmt2, + t™ | EYll2,6) + 107 = Bu|ml| EY ll2,2,
(3.15) <10 = Bulo (1B llm2,e + ™ 2| Bx Nloe) + 0+ = O lmy2ll EX 0,0
S 107 = Bulo (llewllm+3,t + 18lm-tallewlloe + ™+l llo,e)
+18r = O lm+sllawllo,-
Similarly, applying (3.9), we have
(3.16)  [JA,rA(EY = E)lme + (A7 — A))wh |lm,e S 1hs. of (3.15).
Since we can write
B, = B, = Prlar — ) + (Pr — P)au,,
it follows, from (2.1) and (3.2), that
187 = Bullm,e
317)  Sller = avllms + 10lmllar = aullos + 18- — Bulollaw [lm,:
+10; = Bulmllavllos + ™ (ler — avllos + 185 — Bulollawllo,z) -
Combining (3.15) — (3.17), one obtains that

(3.18) 1R |t S llar = allm,e + |5|m|lar —ayllot +t"lar — aullo,
' +r.h.s. of (3.15).

Therefore it follows from (3.13) and (3.18) that

(3.19) 18: P (w? — w2l S rhus. of (3.18).

If we combine (3.10), (3.11) and (3.19), we see that
||U1- - UV“m,t

S llar —avllm,e + |5,m”ar —ayllos + " Jar — avllo,

+10- = 3ulo (llew lmta,e + 1Blmtallenllos + ™2 {lavllo,s)

+10: = 3y lmtsllewllo-

(3.20)

This proves Theorem 1.3.

Next, let us prove Theorem 1.5. That is, we estimate the derivatives of V,
(or U, u;) at 7 = v. Let D? denote the g-th order derivative operator in
T-variable and we denote a typical element of Dig, by giq). We recall that
f? =B + A.rhEY and w? =V, + rhE”. Let S, be the solution of

(321) A8, =-ALwl +(f2) =B + A (rhEY) — ALV, :=R{, 7€,
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where A’ and (f?)’ are the derivatives of A, and f* with respect to 7 € I, in
the Sobolev space H,,(M). To estimate || R} || 1, we first estimate A, (rhE})'.
Note that

(3.22) A,(rhL,)'V, = th(L,)AV, + T, V,,
where Y, = {A,,, rh(L.Y ] Therefore it follows from the interpolation formulas
(2.2)~(2.4), and from the estimate (3.5), that
1Yo Vollme S WVollmsze + 0l mlIVlle + ™ [Voll2
(3.23) S IWVellmtz,e + 1810, me2l[Volloe + ™2 Vollo,e
S HBulimeze + (101Lmss + ") [Bullo.,

because [9];.4 ~ 1.
Combining (3.22) and (3.23), we obtain that

A, (rRE}) .1
(3.24) S B + 181 mllBullr e + ™18,
S Bullmaze + (1011,mss + th) {18,

Similarly, ||A’ V;||lm.c is bounded by the right hand side of (3.23). Hence it
follows from (3.3), (3.21} and (3.24) that

(3:25)  NPTRY Nt SUBLm,t + 18ulims2e + (10)1mes + (™) [1Bulio,e-
Therefore, one obtains, from (2.3}, (2.4), (2.7), (3.5) and (3.25), that
18,8, Sullm.t
SNETRY lmot + 10lmd| P URY o + 711 RY o
S llellm,e + (8l + ™)l llo.e + Hew [lme2.
+ {(Olmra + £42) llau flo.s-

Since w¥ - w} € Dom(A;), we have

e+ [V Vo lm g

|
lo.¢.-

(3.26)

At —w!) = B (w? —w?) = £ = §7 ~ (A, = A,y
Hence it follows that
A (Bt s = E2L oy - (—A—’"——A—”w:ﬁ - ALw:) =R
T—v T~V TV
Therefore one obtains, from (2.6), (3 2) and (3.3}, that
B, P wy — 8, Pl

= = 3,5 Sy llm.t
(3.27) SRt + [Olma 1R ]los + fmlff%';ﬂa,t
(O.P7Y 3, P w"

+ 10, P Sy = 8, P S, e + |l

2 e
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for a sufficiently large ¢, independent of 7 € I. From (3.21) and Theorem 1.3,
we have |0, P71 S, — 0, P S, |lmy — 0 as 7 — v, and if we write

. (ff i (f"))+(—(f$)’+(f;’>’)

- (A—A—w - M) - Bt -+ 8 - B

-V

it follows from Theorem 1.3 that ||R?||;\» — 0 as 7 — v and hence one obtains
from (3.27) that

(328) (@R 'wh) =ul, + @, P \rhEY)Y =8,P7'S, + (0, P ) w

in H,,(M) where u, = 8, P;1V,. Combining (2.1), (3.8), (3.26) and (3.28),
one then obtains, for sufficiently large { > 0 and for each v € I, that

e llm.e SN0, Py Sullm,e + 1@, Py ) w .t + 1B, Py rREL) limot
(3:29) S Nl + Nl lmsze + (1Blmss + ™) e llo e
+ (‘5|1,m+3 + tm+2) ”aVHO,ta

provided a!, € Hy,, and o, € Hy2(M). Similarly, following the same method,
one can show that the solution of O,U, = a, satisfies the same estimates as
in {3.29) with u replaced by U, and hence we obtain that

(3:30) iy llme + s llmss + WU lIme + Ublimsze $ rhos. of (3.29),

independent of v.

For a simplicity, we let || f]|; m,: denote the norm || f||;,m ¢x defined in Section
1. We recall that v = u{r,z) = u,(z) and a = a(r,z}) = a-(z). In the
following, we let AV = 3, and Ou = o mean that A,V, = 8,, and J,u, = a,,,
respectively, for each v € I. Since the estimate in (3.30) is independent of v € T
we integrate both sides of (3.30) with respect to v € I variable. Then we can
summarize the above results as follows:

Proposition 3.4. Under the notations as above, for each nonnegative integer
m there are constants C,, and Ty ., independent of v € I, such that if « €
Hy (I Xx MYN Hymio(I x M) and if t > Ty, then the canonical solution u of
Ou = a and the Neumann solution U of OU = a with weight e~** satisfy the
estimate

lulli,m.e + llullo,mae,e + N1Ul1m,e + IUllo,me2,e
(3.31) S lledlm,e + llellomtz,e + (18lmer + ™) llalh o,

+ (|8]1,m+3 + tm+2) llello,o,e-
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For higher order derivative estimates, we use inductive step. For each non-
negative integers ¢ and m, and for each 7 € I, we set

G(a,q,m)
q

=Y 10lg-ro (HQS‘T)HTTH'QQ‘?TJ + (297 4 0] g mer1420-20) |!a(f)l|0,t) :
r=0

Let u, U and V be the canonical, Neumann solutions of Ou = a respectively.
In [6], the first author proved that the solutions u, U and V are smooth on
parameter variables provided « is smooth on parameter variable. Assume o €
Him (I x M) N Hy myor(I x M)NC*™(I x M) and assume that there exists a
constant T, ., > 0, independent of 7 € I, such that if ¢ > T} ,, then for each
q < k we have

(3:32) [[ul®lm,z + 108 D lmrze + 1V e + IV gz S Grlesg,m).

From (3.30), it follows that (3.32) holds for k = 1. Let us prove (3.32) for k+1.
Assume that AV = § where 8 € Hppq,m (I X M)NHi mi2(I x M)NC* (I x
M). Fix v € I for a moment. For each 7 € I, define E | € A by

By (L) =T,vP @) + (B VB 'T,L), Tel,

r

and set
wi, = V¥ 4rhEf,,
flo = AV 4 ArhE],
b = —Awf L+ (L)
Note that
(3.33) A VD = (A,VT)(HU + XDy,
where

XD = [AT,Df“] .
From the interpolation formulas (2.1)-(2.4), it follows that
XV e
339 < > 10lollViE lmeze + 10ltmr2l Vi o + 21010

s+l=k+1
s<k

Vi o

independent of 7 € I. Note that if we use the interpolation formula (3.14) in 7
variable, and space variable separately, we obtain that

(335)  [Blioldls—ro S Pliss—ro  and  [Blpk Blpks S [Op.ks+k:[0p.0-

Combining (3.33)-(3.35), and using the induction hypothesis (3.32), we see
that

(3.36) A VD) <8I, + Gl k + 1m),
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independent of 7. Also, as in (3.24) (with V, replaced by Vl,(k)) and using
(3.36), it follows that

(337) HAV(ThEZ,u)I“m,t 5 Gf/(aﬂ k+ lvm)7
and hence, one obtains, from (3.2), (3.3), (3.36) and (3.37), that
(3-38) 1P Ry 1y llme S 10D e + Gl (a k + 1,m),

independent of v. Using (3.38) and the interpolation formulas (2.3) and (2.4),
one can show that

(3.39) 10lm1allPy Ry ulloe + 7P Ry o S Gk +1,m).

Let Sit1,, be the solution of A,Ski1, = Ry, . It follows from (2.7),
(3.3), (3.38) and (3.39) that

18, 2 S0l
S IR t1,0llmt + [0lmar B 1 lloe + ™ 11RE 1, o
SN0 D s + G,k +1,m)
< Gi(a,k+1,m),

independent of v € I provided ¢ > 0 is sufficiently large. If we follow the same
method leading to (3.28), we see that (wj )’ exists and

(3.40)

v d v 14
(B4 whry = Sen = (0, )0) = V) 4 rh(BL,)
in H,(M), and hence it follows from (3.41) that

B, P, Sk = O, PV 4 B P UR(E, )
(3.42) . (k+1) .
= (OP7IV) T+ 28, + 8, B (B,

where
Zk+1) = [EiP;I,D’;“] .
As in (3.34)—(3.37), we have
(3.43) I1ZEFIV, lmot + 118, P rh(EL ) s S Glla ke + 1,m),
and it follows from (3.40)—(3.43) that
[wSF D e S Gl kym +2) < G (a, b+ 1,m),

because u, = 8, P;1V,. Similarly, ||V,,(k+l)||m,t is bounded by G% (a, k+ 1, m).
This proves the inductive step of (3.32).

Since (3.32) holds independent of v, we integrate both sides with respect to
v € I. Then for each integers k and m, there is T,, > 0 such that for each
t > T,,, we have

1Mkt + Ut vzt + llim,e + elli—1,me2,e S Gas kym),
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m) is defined in (1.7). Obviously, this estimates holds for a €

where G*(a, k,
) N Ho,m+26(I x M). This proves Theorem 1.5.

HymI x M

4. Sobolev estimates on parameters on strongly pseudoconvex
domains

When we study several complex variables, we sometimes fill a domain by
a smooth parameter family of strongly pseudoconvex domains and use the
estimates of d-equation on space and parameter variables. Therefore we need
to study a precise estimate both of space and parameter variables when M is
strongly pseudoconvex.

Let {M, L™ }+¢1, be a smooth family of diffeomorphic complex structures on
M and assume that M is strongly pseudoconvex with respect to £°. In this
case, we gain one derivative for Neumann operator and %—derivative for the
canonical solution. In the following we assume that s > —3%, and |- |, should
be understood that | - {,; where [s] denotes the smallest nonnegative integer
bigger than or equal to s. If we use the estimate (2.11) instead of (2.6) and
(2.7), then (3.8) and (3.9) become

(4.1) 1EZ|ls < llewlls + [0lssallew ]l
and
(42) 1B = Bl S 1B, = Blo (llawlls + Blesalinli- ) + 18 = Bulill o
Therefore the estimates analogous to (3.13) become
w39 1P (W = w)lean + 118, P (wh = w))ll,4 g
SIPTRY s + 10lsvell P RYIL
where RY is the right hand side of (3.12).
If we use the estimates (2.4) (with ¢ = 0), (4.1) and (4.2) we obtain that
(4.4) 1P RY s S ller —alls + [0lsllar = aullo + |57 - 5uls+2”04u|10
+10- = Bulo (llawlls+2 + [Ols+allew o) -
As in (3.18)-(3.20), it follows, from (4.3) and (4.4), that
(4.5) WU = Uslls41 + llur — uplls4 3 SThis. of (4.4),

provided that o, € Hyyo(M) for some v € I and «, E_HS(M) foreach 7 €1
where s > —1/2. Here we have used the fact that |8|;4 ~ 1. This proves
Theorem 1.6.

Next we estimate the derivatives in parameter variable, i.e., Theorem 1.7.
For each ¢ > 1and s > —1, and for each & € H, sy 125—2-(I x M)NC®(I x M),
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0 <r <k, and for each 7 € I, we set
H:(a,q,5)

q

= > 10lg-rolled ls1qr

r=0
+ (10l4—r,010]0,s4+24+1 + |5|q—r,s+2q+1) ”a‘(rr)nq—r—%'

Recall that Ry = = f; + A, (rhE?) — ALV,. To estimate A, (rhE?)', we use
the expression (3.22). Since M is strongly pseudoconvex, we note that the
Neumann solution U, gets one derivative and hence the analogue of (3.23)
becomes

(4-6) “YVVV”S 5 “Vu”s+2 + |5|1,s+3||VV||0 ,S ||O‘V“s+1 + |5|1,s+3”0‘11”—%'
Hence it follows from (3.22) and (4.6) that

@ 1A, (rREY) s S N1Bullst1 + 1Bl1sl1Bu Ml + Y. Vol

S llewllsrr + |5|1,s+3||05u||¢%-

Similarly, ||A”V; ||, is bounded by the right hand side of (4.7), and hence one
obtains that

(4.8) IPIRY s S llewlls + llowllssr + 10

1,s+3||au||~§-

From (4.6)—(4.8), it follows that the estimates analogous to (3.26) become
(19) 1P Sullsr S IIPTIRY s+ [0lssall P RY NI

Slleglls + llewlls1 + |5|1,S+3”ar/”—%'

If we use (4.9) and follow the same method leading to (3.29), we obtain that
(4.10) 10 N1 + N ey z S Nlewlls + llewllosr + Bl1,srsllanll -y,

where u, = E;PJIV,,.
Assume, by induction (on k), that

(4.11) ”U,Eq)”s+1 + “Vu(q)”s+1 + ”ux(/q)”s-}-% < Cq,sHV(aaQ73)7

for s > —% and g < k, where C, , does not depend on v € I. From (4.10), it
follows that (4.11) is true for k = 1. Recall that

(4.12) Ry, = A, VD L A (rhEY ) = BT + X5V, + AL (rhEY ),

XA+ — {A d ]

where

T dre



EXPLICIT SOBOLEV ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION 337

If we use the interpolation formulas (2.1)-(2.2), and the estimate (3.34), and
the induction hypothesis (4.11), we obtain that

XDV,

413) < > 10pollVi¥llesa + Bl sl Vilo S He(ask +1,5)

ptg=k+1
q<k

because |8]14 ~ 1 and H.(a,q,5 + 1) < H.(a,q + 1,5) < H.(a,p + ¢,5).
Therefore it follows, from (4.13), that

(414) A VI S BED | 4+ [ XEDV S H, 0,k + 1,5).
Also, as in (4.7), one can show that
(4.15) |A-(rhEL )'|ls S He(k,s +1) S He(eyk +1,5).
Therefore, it follows from (4.12), (4.14) and (4.15) that
(4.16) Bkl S Helok + 1, 5).

As in (3.41), we see that (wy )’ exists and
(@.17) Seerw = o], )0) = VI 4 rh(BL,)

in H,(M) where Sk41,, is the solution of A, Sky1,, = Ry, . From (4.16), we
have

1P, Skrrllser S P Ry 2 lls + 10]ss2ll Py Ry Wll -y
5 HV(a7k + 175)7

and hence it follows from (3.3) and (4.17) that

(4.19) U g + VD or S Holak +1,5).

+1)H

(4.18)

Similarly, Huf,k o+l < Hy(a,k + 1,8). This proves the inductive step.

Since (4.19) is independent of v € I, we integrate both sides with respect to
v € I. Then for each integers k and s > —1/2, there is Cy s > 0 such that

(4.20) IUlks+1 + 11V Ilkst1 + lull oy < CrsH(ask, ).
This proves Theorem 1.7.
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