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SOME ALGEBRA FOR PEARSON TYPE VII
RANDOM VARIABLES

SARALEES NADARAJAH

ABSTRACT. The distributions of products and ratios of random variables
are of interest in many areas of the sciences. In this paper, the exact
distributions of the product |XY| and the ratio |X/Y] are derived when
X and Y are independent Pearson type VII random variables.

1. Introduction

For given random variables X and Y, the distributions of the product XY
and the ratio X/Y are of interest in many areas of the sciences.

In traditional portfolio selection models certain cases involve the product of
random variables. The best examples of this are in the case of investment in a
number of different overseas markets. In portfolio diversification models (see,
for example, Grubel [6]) not only are prices of shares in local markets uncertain
but also the exchange rates are uncertain so that the value of the portfolio in
domestic currency is related to a product of random variables. Similarly in
models of diversified production by multinationals (see, for example, Rugman
[20]) there is local production uncertainty and exchange rate uncertainty so that
profits in home currency are again related to a product of random variables. An
entirely different example is drawn from the econometric literature. In making
a forecast from an estimated equation Feldstein [4] pointed out that both the
parameter and the value of the exogenous variable in the forecast period could
be considered as random variables. Hence the forecast was proportional to a
product of random variables.

An important example of ratios of random variables is the stress-strength
model in the context of reliability. It describes the life of a component which
has a random strength Y and is subjected to random stress X. The component
fails at the instant that the stress applied to it exceeds the strength and the
component will function satisfactorily whenever ¥ > X. Thus, Pr(X < Y)
is a measure of component reliability. It has many applications especially in
engineering concepts such as structures, deterioration of rocket motors, static
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fatigue of ceramic components, fatigue failure of aircraft structures and the
aging of concrete pressure vessels.

The distributions of XY and X/(X+Y") have been studied by several authors
especially when X and Y are independent random variables and come from the
same family. With respect to products of random variables, see Sakamoto [21]
for uniform family, Harter [7] and Wallgren [27] for Student’s ¢ family, Springer
and Thompson [23] for normal family, Stuart [25] and Podolski [15] for gamma
family, Steece [24], Bhargava and Khatri [3] and Tang and Gupta [26] for beta
family, AbuSalih [1] for power function family, and Malik and Trudel [11] for
exponential family (see also Rathie and Rohrer [19] for a comprehensive review
of known results). With respect to ratios of random variables, see Marsaglia
[12] and Korhonen and Narula [9] for normal family, Press [16] for Student’s
t family, Basu and Lochner [2] for Weibull family, Shcolnick [22] for stable
family, Hawkins and Han [8] for non-central chi-squared family, Provost [17]
for gamma family, and Pham-Gia [14] for beta family.

In this paper, we study the exact distributions of | XY| and |X/Y| when X
and Y are independent random variables having the Pearson type VII distri-
bution with the pdfs

_ T(M-1/2) 22\ '/P M
) 1) = g (1 ¥ —)
and

_ T(N-1/2) y2\ /2N
(2) f(y)_\/n_TF(J—V——I)O—F;) ;

respectively, for —o0o < # < o0 and —o0 < y < 00, wherem >0,n >0, M > 1
and N > 1. These distributions are closely related to the well-known Student’s
t distributions: if M =1+ a/2, N =1+b/2, and

(3) U, V)= Q/%X, \/%Y) ,

then U and V are Student’s ¢ random variables with degrees of freedom a and
b, respectively. Note that the pdf of a Student’s ¢ random variable with degrees
of freedom v is given by

1 T2 —(1+v)/2
) @)= ZBwm 1 (1 * 7)
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for —00 < z < oco. Nadarajah and Kotz [13] have shown that the cdf corre-
sponding to (4) can be expressed as

(5) /
tv—1)/2 1-1/2
1 1 ;
=+ —arctan (j—> + L Z B (l,l> V—‘ml, if v is odd,
2 7 Vv 2r & 2 (v + 22)
Fer=a ) o 11 -1
vV o
_+§7—T-ZB<I—§,§> m, if v is even.

This result will be crucial for the calculations of this note. The calculations
involve the complete elliptical integral of the first kind defined by

dz,

/ dr
0 v/1-122v/1— a222
the complete elliptical integral of the second kind defined by
/ V1-a’s? 1—a2x2
1-— .T:Q

and the Gauss hypergeometric function defined by

G {a,b;c; ) Z(ac T
)i

where (e); = e(e +1)---(e + k — 1) denotes the ascending factorial. We also
need the following important lemma.

Lemma 1 (Equation (3.197.9), Gradshteyn and Ryzhik [5]). For p > A >0,
0
| @ A e = Blu= ANGs X - ).
0

Further properties of the above special functions can be found in Prudnikov
et al. [18] and Gradshteyn and Ryzhik [5].

2. Product

Theorem 1 derives an explicit expression for the cdf of | XY | in terms of
the hypergeometric function when the degrees of freedom 2(M — 1) is an odd
integer.

Theorem 1. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. If a = 2(M — 1) is an odd integer
and b= 2(N — 1), then the cdf of Z = |XY| can be expressed as
(6)

2

(a=1)/2
- 1+b 1 14b . 1+b . 1
Flz)= I(h)+ —mo B( k)B(L, )G(k,—;k+—;1—~—),
) ®) 7VabB (b/2,1/2) k}::l 2 2 2 2 ab
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where 7 = \/ab/(mn)z and
(145)/2

7) 1) = m/omarctan<\/_y> <1+y ) dy.

Proof. Using the relationship (3), one can write the cdf as Pr(|XY| < z) =

Pr(JUV| < r), which can be expressed as
2\ —(1+6)/2
) D)
|y | b

(8)
1 * r
"= Jizmrm o ()
) VBB (b/2,1/2) J oo |y |
o0 92 ~(1+b)/2
- T FG)FE0E)
VbB (b/2,1/2) Jo y y b
where F(-) inside the integrals denotes the cdf of a Student’s ¢ random variable
with degrees of freedom a. Substituting the form for F given by (5) for odd
degrees of freedom, (8) can be reduced to

2% (= 1)/2 1
(9) F(r) = I(b)+7r VAETORTE ; B(k,§> J(k),

where J(k) denotes the integral

2k—1
Y

d
/0 (y2 + 7‘2/a)]C (1 + yz/b)(l_H')/2

Substituting w = 72 /b, (10) can be reduced to

(10) Jk) =

1 o0 wk—l
J(k) == / dw
(1) 2 Jo {w-|-1°2/(ab)}’c (1+w)H72
1+b 1+b 1+b r?
(M) o (1 e - )
where the last step follows by direct application of Lemma 1. The result of the
theorem follows by substituting (11) into (9). O

Theorem 2 is the analogue of Theorem 1 for the case when the degrees of
freedom 2(M — 1) is an even integer.

Theorem 2. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. If a = 2(M —1) is an even integer
and b= 2(N — 1), then the cdf of Z =|XY| can be expressed as
(12)
a/2 2
F = -~ B(k_1,1)3<b+_1 __) (_l’lib;k 9; _T_),
=) m/EB(b/Q,uQ)Z 2’2 CRRAEEY A U A LA TR

k=1

where 7 = \/ab/(mn)z.
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Proof. Substituting the form for F' given by (5) for even degrees of freedom,
(8) can be reduced to

a/2

2r 11
(13) F(z) = TRV > B <k -5 5) J(k),

k=1

where J(k) denotes the integral

2k--2
y

dy.
/0 (yz + r2/a)k_1/2 (1 + yQ/b)(1+b)/2

(14) J(k) =

Substituting w = r2/b, (14) can be reduced to

1 oo wk~3/2
J(k) = —/ — ~dw
(15) 2 Jo {w+ TZ/(ab)}k 12 (1 + w)(HT0)/2
1_[/1+b 1 1 1+b b r?
=38 (T’k_ §)G(k‘ 3 Rt gils @)v
where the last step again follows by direct application of Lemma 1. The result
of the theorem follows by substituting (15) into (13). O

Figure 1 illustrates possible shapes of the pdf of | XY | for a range of values
of M and N. Note that the shapes are unimodal and that the densities appear
to shrink with increasing values of M and decreasing values of N.

3. Particular cases

Here, we derive particular forms of (6) and (12) for 2(M - 1) = 2,3,4,5
and 2(N - 1) = 1,2,3,4,5. In our calculations, we have used various special
properties of the Gauss hypergeometric function (see, for example, Section 7.3
in volume 3 of Prudnikov et al. [18}). When 2(M —1) is odd the expressions for
the cdf involve the integral I{-) in (7) which should be computed numerically.
When both 2(M —1) and 2(N —1) are even the expressions involve the complete
elliptical integrals of the first and second kind. In all other cases, the resulting
expressions for the cdf are elementary.

Corollary 1. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. For 2(M —1) = 2 and 2(N — 1) =
1,2,3,4,5, the cdf of Z =| XY | can be expressed as

2rarctanh(1/2\/m)
Fe = 212 ’

4K (T 4 2 ()
e = —4 472 '

27‘{ arctan (1/6\/~36 + 6r2)r2 ++/—36 + 672 — 12arctan (1/6\/W)}
F(z) = ,

7r(«6+r2)3/2
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FIGURE 1. Plots of the pdf given by (6) and (12) for m =1,
n=1and (a) M =1.5and N =1.5,2,2.5,6; (b) M =2 and
N =1.5,2,2.5,6; (c) M = 2.5 and N = 1.5,2,2.5,6; and, (d)
M =6and N =1.5,2,2.5,6.

96K (VISEEVE ) — 4K (VIR ) g2 16y (YEIREENE ) 4 pip (YEITEEEE )

(s-r)
2 { 3arctan (1 /wm) rt 4 3\/——mr2}

5/2

37r( - 10+ r2)
9 {—80 arctan (1 /mm) r? - aom}
5/2
37r( —-10+ 7"2)

2r {800 arctan (1/10\/m) }

' 37r(—10-|—1"2>5/2 ’

F(z)=

3

F(z) =

+

where r = \/ab/(mn)z.
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Corollary 2. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. For 2(M —1) =3 and 2(N — 1) =
1,2,3,4,5, the cdf of Z =| XY | can be expressed as

2x/§r(log3 - 210gr)
2 (3 - r2)
2v6r{ /36 — 6r%arctanh(1/6v36 — 6r7) ~ 6 + 12 |
m(6- r2)2

12r<181og3 —18logr — 9+ 7"2)
F(z) = 13) + : :

7? (9 - 1'2)2
2v/3r{ — 72v/36 — r%arctanh (1/6V/36 — 32 ) + 576 - 60r* + 1 }

7r( - 12 +r2)3

F(z)=I1(1) +

F(z)=12)+

7

F(z)=1(4)+

3

8\/1_5r< — 4501og 3 — 450 log 5 + 900 logr + 675 — 60r2 + r4)
F(z) = I(5) + -

2 = 2 3
3r2{ —15+7r

?

where 1 = \/ab/(mn)z.

Corollary 3. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. For 2(M —1) =4 and 2(N —1) =
1,2,3,4,5, the cdf of Z =| XY | can be expressed as

F(2) r {6 Va - r2arCtanh(1/2\/4 - rz) -4 - r%rctanh(l/?x/m) -4+ r2}
z) = i ’
{4 —r
(+-7)

96K(3£—163—r21'2312) _ 4K(1A162}r2r?5{9)rg _ 16T2E(\/—16;‘2r‘2\@) +7,4E(3/~16;r2r§ﬁ)

o (3- r2)2 :
Fle) = 2r{ arctan (1/6v=36+ 37 ) + 236+ 3% - arctan (yov=m737))
n(- 12+r2)5“
2r{r* - 60v/=36 + 377 + 432arctan (1 /6v=55+57)}
’ w<_12+,2)5/‘2 ;
F(z) = —92161{(@) +192K (@)rz - SK(@)H
( ~16+ 7'2)3

96072 B (VEIEEE ) — 4 p (IR ) 4 0 p (Y18

(— 164—7'2)3

+
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2r{3 arctan (1 /10v/=100 + 57‘2)7'6 +6v=100+ 5r2r4}
F(z) =

3r(—20+ 7'2)7/2
2 {—210 arctan (1 /10\/W)r4 - 340\/Wr2}
3r(-20+ r2)7/2
2 {4800 arctan (1 /wm) r? — 96000 arctan (1 /10\/W)}
+

37r( -20+ r2)7/2

+

+ 2r {10400v/-100 + 577 }
7/2
37r( —-20+ r2)

where 7 = \/ab/(mn)z.

Corollary 4. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. For 2(M —1) =5 and 2(N —1) =
1,2,3,4,5, the cdf of Z =| XY | can be expressed as

3

2\/57"(25 log5 — 3log57® — 50log T + 6logrr? — 10 + 27‘2)
F(z) = I(l) + 5 s
372 (5 - r2)
3/—100 + 107272 + 10 arctan (1 /10/=100 + 107‘2)r2}
5/2
37r( ~ 10+ 7‘2) /
2r{3\/—100 +1077V/100 — 10r%arctanh (1/10v100 - 1077) }
+ 5
72
37r< ~10+ r2)
2r{ ~ 60y/=T00+ 1077 + 200 arctan (1/10\/—100 +1077) |
.+_

37r( - 10+r2)5/2

27‘{
F(z)=1(2) +

3

Wﬁ?( ~ 375log3 + 5log 3r? — 375log 5 + 5log 5T2)
w2 ( —-15+ 7'2)3
4V/15r (750 logr — 10logrr? + 525 — 5072 + T4)
' 2 ( —15+ 7‘2)3 ’
+ 2r{3v/=100+ 572r* — 220y/=T00+ 57272 - 1800 axctan (1/10v=100 + 577 )2 }

377( —20+ 7'2)7/2

F(z)=I(3) +

2r{ ~ 360y/=100 + 572v/100 - 52arctanh (1/10v100 - 57)}
+

37r(—20+1'2)7/2
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2r{ ~ 24000 arctan (1 /10v=T00 + 577 ) + 9200v/—100 + 5r‘~’}
+

3w - 20+ r?)m

3

40r{31250010g5 +2500log5r? — 312500 Iogr}

e =106) or2 (25 - 7'2)1

40r{ — 2500 logrr? — 206875 + 18125r% — 32571 + 3r6}

972 (25 . 7-2)4

4

)

where r = \/ab/(mn)z.

4. Ratio

Theorem 3 derives an explicit expression for the cdf of | X/Y | in terms of
the hypergeometric function when the degrees of freedom 2(M — 1) is an odd
integer.

Theorem 3. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. If a = 2(M — 1) is an odd integer
and b =2(N — 1), then the cdf of Z =| X/Y | can be expressed as

(16)

(a—1)/2 k
2Vbr a*B(k,1/2) b—1 1+b a
F(z) = I(b . Gk b+ tipe 100 2,
(@) =10+ e 2 179) 2 R 2k 4 b - 1) ( Tyt br2)

where r = \/na/(mb)z and

17 1) = m /Ooo arctan (%) (1 4 %Z) R dy.

Proof. Using the relationship (3), one can write the cdf as Pr(| X/V [< 2) =
Pr(| U/V |< r), which can be expressed as
(18)

2

_ 1 oo ~ ~ y —(1+b)/2
R0 = oy | FeD =P (1)

3 ) oC yQ —(1+b)/2
"~ VbB (6/2,1/2)/0 () = Fl=ry)} (H 7) w

where F'(-) inside the integrals denotes the cdf of a Student’s ¢ random variable
with degrees of freedom a. Substituting the form for F given by (5) for odd
degrees of freedom, (18) can be reduced to

k=1

(19)  F@r) = 1)+ —— (af/gak—l/ZT—ZkB (k 1) J(k)
B 7VbB (b/2,1/2) "9 ’

k=1
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where J(k) denotes the integral

(20) J(k) = /0 (y2 + a/TZ)k (i/+ yz/b)(1+b)/2 dy

Substituting w = 1/(1 + r?/b), (20) can be reduced to

1 oo wht(+b)/2-2
=g [1+ {o/(br®) ~ 1} ]

1 1+ 1+ a
=G|k k+—-Lk+ ——;1- — ],
b2k +b— 1) ( 2 2 br2)

where the last step follows by direct application of Lemma 1. The result of the
theorem follows by substituting (21) into (19). a

(21)

Theorem 4 is the analogue of Theorem 3 for the case when the degrees of
freedom 2(M — 1) is an even integer.

Theorem 4. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. If a = 2(M —1) is an even integer
and b = 2(N — 1), then the cdf of Z =| X/Y | can be expressed as

(22)

a/2 g1
2vbr 2Bk -1/2,1/2 1 b b,
F(z) = —_— k_l(/z / /)G(k— k4o —Lik+z _2),
mvaB (b/2,1/2) £ r** b (2k —2+b) 27772 71
where 7 = \/na/(mb)z.

Proof. Substituting the form for F' given by (5) for even degrees of freedom,

(18) can be reduced to
11
k=l 1-2kp (g 2 2
(k-1 2) 0,

a/2
mVbB (b/2 1/2) £ Z

where J(k) denotes the integral

(23) F(r) =

= y
dy
/0 (y2 + a/r2)k_1/2 (1 + y2/b)(1+b)/2

Substituting w = 1/(1 + r2/b), (24) can be reduced to

(24) J(k) =

1 o0 wk+b/2-—2
J(k) = —— / dw
—3/2 k—1/2
(25) 2b o [1+{a/(br®) - 1}w;
1 1 b a
= R SRR T NS PLE
b’“‘3/2(2k+b—2)G<k phty T likty br?)’

where the last step again follows by direct application of Lemma 1. The result
of the theorem follows by substituting (25) into (23). O
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FIGURE 2. Plots of the pdf given by (16) and (22) for m = 1,
n=1and (a) M =15and N = 1.5,2,2.5,6; (b) M =2 and
N =15,2,2.5,6; (¢) M =25 and N = 1.5,2,2.5,6; and, (d)
M=6and N =15,2,2.5,6.

Figure 2 illustrates possible shapes of the pdf of | X/Y| for a range of values
of M and N. Note that the shapes are unimodal and that the densities appear
to shrink with increasing values of N and decreasing values of M.

5. Particular cases

Here, we derive particular forms of (16) and (22) for 2(M — 1) = 2,3,4,5
and 2(N - 1) = 1,2,3,4,5. In our calculations, we have used various special
properties of the Gauss hypergeometric function (see, for example, Section 7.3
in volume 3 of Prudnikov et al. [18]). When 2(M —1) is odd the expressions for
the cdf involve the integral I(-) in (17) which should be computed numerically.
All the remaining terms in the resulting expressions for the cdf are elementary.

Corollary 5. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. For 2(M —1) =2 and 2(N - 1) =
1,2,3,4,5, the cdf of Z =| X/Y | can be expressed as

Flz) = 2 arcsin(y) 7
Ty
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) = =,
Flo) 2\/?:{3r arcsin (y/\/g) - \/iy},

w3

~ r(8r3 —6V2r% + \/5)

2(2r2 - 1)2
~ 2\/5{757'3 arcsin (y/\/5> — 25v2r%y + 4\/§y}

3rysr3

where r = \/na/(mb)z and y = /(br? — 2)/r2.

b

F(z)

3

Corollary 6. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. For 2(M —1) =3 and 2(N - 1) =
1,2,3,4,5, the cdf of Z =| X/Y | can be expressed as

2\/3(101@;3 - 2logr)

72 (rz - 3) ,
2\/6(\/§yr2arctanh (y/\/i) — 22 4 3)

)+ iyt

4r (1"2 —1-2r?log r)

2 (7"2 - 1)2
2/3 (24yr4arctanh (y /2) — 647 + 60r2 — 9)

Troyb

8v/15r (5010g 3r% — 50log 5r4 — 100 log rrt + 75r% — 6072 + 9)

F(z) = I(1) +

7

bl

F(2) = I(4) +

7

F(z) = I(5) -

Y

3r2 (59"2 - 3) ’

where r = y/na/(mb)z and y = /(br?> — 3)/r2.

Corollary 7. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. For 2(M —1) =4 and 2(N — 1) =
1,2,3,4,5, the cdf of Z =| X/Y | can be expressed as

Fl) = 2{ (r2 - 6) arcsin (y) + ry}

TySr2

)
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- r(x/ir+3)

Ay
6\/§r{r(3r2 - 10) arcsin (y/\/§) + 4y}
F(z) = s ,
= 7'(4r5 — 12/ — 34 J; 14r2 - 3) |
4(r2 - 1)
ro) = 2\@{7573 (52 - 14) arcsin (4/v5) - (00" - 46072 + 96>y} |

3nyrd

where r = \/na/{(mb)z and y = \/(br? — 4)/r2.

Corollary 8. Suppose X and Y are independent Pearson type VII random
variables with pdfs (1) and (2), respectively. For 2(M —1) =5 and 2(N —1) =
1,2,3,4,5, the cdf of Z =| X/Y | can be expressed as

zﬁr{ (3]0g5 — 2)7‘2 —6logrr? + 50logr + 10 — 25 logS}

P(z) = I(1) - 2 ,
32 (r2 - 5)
2/1046+/2{ % — 5)arctanh y/\/§ + (25 —4r?)y
e oA~ e (8) (53]}
3nrdyd
4\/ﬁr{2710g(5/3)r4 + 1041og(3/5)r? — 54log 7'T4}
F(z)=1(3) - 5
3n2 (302 - 5)
4\/Br{21010grr2 +9rt - 9r2 + 125}
372 (3r2 - 5)3 ’
2v/54 9612 3r2 — 10)arctanh{y/2) — (144r* — 580r? + 125 )y
R )
3nroy
8&r (5r6 — 277 +27r — 5 — 12logrr® + 36 logrr")
P() = 1) - : ,
92 (r'~’ - 1)
where r = \/na/(mb)z and y = /(br? - 5)/r2.
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