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IMAGINARY BICYCLIC FUNCTION FIELDS WITH
THE REAL CYCLIC SUBFIELD OF CLASS NUMBER ONE

Hwaxyupr JunG

ABSTRACT. Let k = ¥, (T) and A = Fy [T]. Fix a prime divisor £ of g— 1.
In this paper, we consider a ¢-cyclic real function field k(+v/P) as a subfield
of the imaginary bicyclic function field K = k(V/P, ¥=Q), which is a
composite field of k(+/P) with a f-cyclic totally imaginary function field
E(¥/—Q) of class number one, and give various conditions for the class
number of k(\e/l—’) to be one by using invariants of the relatively cyclic
unramified extensions K/F; over {-cyclic totally imaginary function field
F; = k({/-PiQ)for 1 <i<{—1.

1. Introduction

Gauss has conjectured that there exist infinitely many real quadratic fields
of class number one, which is now still unsolved. In [9], in connection with this
Gauss’ conjecture, Yokoi considered a real quadratic field Q(,/p), where p is
a prime number with p = 1 mod 4, as a subfield of the imaginary biquadratic
field K = Q(,/P, v/—q), which is a composite field of Q(/p) with an imaginary
quadratic field Q(y/—g) of class number one, and gave various conditions for
the class number of Q(,/p) to be one by using invariants of the relatively cyclic
unramified extension K/F over imaginary quadratic field F = Q(,/=pg). In
this paper we extend Yokoi’s result to the imaginary bicyclic function field case.

Let k = F,(T'), the rational function field with constant field F,, and A =
F,[T]. Fix a prime divisor £ of ¢— 1. For a monic prime P € A, if | deg P, then
k(+/P) is the unique {-cyclic real subfield of K}, where K is the maximal real
subfield of the P-th cyclotomic function field Kp. Otherwise k(\”/—_fj) is the
unigue ¢-cyclic totally imaginary subfield of Kp. In this paper, we consider a £-
cyclic real function field k(v/P) as a subfield of the imaginary bicyclic function
field K = k(¥P,/=Q), which is a composite field of k(v/P) with a f-cyclic
totally imaginary function field k(y/—@Q) of class number one, and give various
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conditions for the class number of k(¥/P) to be one by using invariants of
the relatively cyclic unramified extensions K/F; over £-cyclic totally imaginary
function field F; = k(/—P?Q) for 1 <i < ¢ —1. When £ = 2 (q is odd) our
result is a function field analog of Yokoi’s result.

2. Notations and preliminary results

Let F' be a global function field with constant field F, and S (F') be a fixed
finite set of primes of F. For any finite separable extension K/F', we denote by
S (K) the set of primes of K which are extensions of primes in Soo(F'). Let
Ok be the ring of functions in K whose poles are in So(K). Let Zg be the
group of nonzero fractional ideals of O and Pg be its subgroup of nonzero
principal fractional ideals of Og. Set Clg := Tk /Pk, called the ideal class
group of Ok, and hg := |Clk|, called the ideal class number of Ok.

For a finite Galois extension K/F with Galois group G := Gal(K/F'), the
following notations are used throughout this paper:

o Ak : the group of ambiguous classes of Clk with respect to K/F

* ag/p = |Ag/r|, the ambiguous class number of K/F

. A(}( /P the group of ideal classes of Cli represented by ambiguous
ideals with respect to K/F, and a?(/F = |A2(/F|

e Ng/F : the norm mapping with respect to K/F, and simultaneously
the homomorphism from Clg to Cly induced by the norm mapping

e jk/r : the homomorphism from Clr to Cli induced by extension of
ideals

® Ng/r = jk/r © Nk/r, the endomorphism of Clx defined as composi-
tion of NK/F and jK/F

o Ap : the group of classes of Clx represented by ideals of F', and af =
|AF|

e (19 : the group of those classes of Clp whose ideals become principal
in K, and hg := |CI%|.

For each prime p of F,

e ¢(p, K/F) : the ramification index of p in K/F
e f(p,K/F) : the inertia degree of p in K/F
e g(p,K/F) = ﬁ/‘%ﬁ{m : the number of primes of K lying over p
e d(p, K/F) : the order of decomposition group of p in K/F.
When K is fixed, we set e(p) = e(p,K/F), f(p) = f(p,K/F), g(p) =
g(p, K/F) and d(p) := d(p, K/ F) for simplicity.

Some results of Yokoi in [8] are translated into function field case by Kang
and Lee in [4, §1] when |Soo(F)| = 1. It is easy to show that all statements
in [4, §1] also hold with some modification even though |S.(F)| > 1. Thus we
will only refer their results when we need them.

Lemma 2.1. Let K/F be a finite Galois extension with G = Gal(K/F). Then
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[T, ep)
N a0 pe. P
W e = 1 G By
(i) HYG,Ek) ~ P$/Pr and |H' (G, Ex)| = 0 mod he.
Proof. (i) See Proposition 1.1 in [4].
(ii) See the proof of [5, Theorem 1] for the first one. The second one follows
immediately from Lemma 1.2 (iii) in [4]. |

, where p runs through oll finite primes of F.

Let K/F be a finite cyclic extension with G = Gal(K/F). Let B be any
abelian group on which G acts. We denote by Q(B) the Herbrand quotient
of B with respect to G. It is well known that Q(Clg) = 1 and Q(Eg) =

(Iye5.. () dpo)) /1K« F].
Lemma 2.2. Let K/F be a finite cyclic extension with G = Gal(K/F). Then

. n o) ygecm €®) 155 1
(1) arsr = hp =P P 2w = | N/ (CL)|IHO (G, Cli)-

(i) ax/r/af p = [Er " Nijp(K*): Ni/p(Ex)] and
ay plor = o -|E1p(¢5wép,) )
ER)|
(iii) presw(p) d(pso) Hpgsw(p) e(p) = 0 mod [EF : Ex N NK/F(K*)]-
Proof. (i) Tt follows directly from Theorem 1.5 in [4] and definition of H%(G,
Clg).

(ii) See Lemma 1.4 and Corollary 2 in {4].
(iii) It follows from the fact that n, is an integer in [4, Theorem 1.5]. O

3. Finite unramified cyclic extension

By the Hilbert class field Hp of Op, we means the maximal unramified
abelian extension of F' in which each p.. € S..(F) splits completely. The
Galois group Gal(Hp /F) is isomorphic to Clp via Artin automorphism, and so
[Hp : F] = hp. The genus field G p of K/F is the maximal extension of K
in Hy which is the composite of K and some abelian extension of F. If K/F
is a finite cyclic extension, then Gal(G g p/K) is isomorphic to Clg JCl°
(Proposition 2.4 in [2]), where o is a generator of Gal(K/F). Since Ag/p is
the kernel of the multiplication by 1—o¢ on Cly, we have ag/p = |Cly JCU%| =
[Gr/r : K].

In the following, by a finite unramified cyclic extension of F, we always mean
a finite cyclic extension of £ which is contained in Hp.

Proposition 3.1. Let K/F be a finite unramified cyclic extension with G =
Gal(K/F). Then we have
(i) AK/F = hp/[.K . F], zle., HF = GK/F'
(ii) ho = |HY(G. Ex)| = [K : F)[Er N Ni/p(K™) : Nieso (Exc)].
(i) [HO(G,CLi)| = 1% N Ny (Clio).
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(iv) |HY(G,Clg)| = 0 mod |H°(G, Ek)| and |H*(G,Clk)| = |H°(G, Ek)|
if and only if Ar = Nk ,r(Clk).
(v) Any ambiguous ideal class of K/F becomes principal in Hp.

Proof. (i) In [4, Theorem 1.5], we have [[, cs_(r) d(Pco) [Tpgs () €(P) = 1,
and so nz = [Er : Ep N Ng,p(K*)] = 1. Thus, we have ag/p = hp/[K : F] =
[HF : K], and so Hp = GK/F-

(ii) By Lemma 2.2 (iii), we have [Ef : Er N Ng/p(K*)] = 1. We also
have I§ = Tr as in the proof of [5, Theorem 1]. Thus |H°(G, Ek)| = [Er N
Ng/r(K*) © Ng/p(Ek)] and hy = |H'(G, Ek)| = [K : F]|H%(G, Exk)| by
Corollary 2 in [4]. Thus we get the result.

(iii) By definition, |H°(G, Clk)| = ak/r/|Nk/r(Clk)|- By (i) and Class field
theory, we have [Nk, (Clk)| = hp/[K : F] = ag/r. From the exact sequence
1 — Cl% N Ng/p(Clr) — Nigyp(Clie) =5 Ni/p(Cli) — 1,
we have |NK/F(CIK)| = |NK/F(CIK)|/|CZ% N Ng/p(Clk)|. Thus we get the

result.

(iv) By Lemma 2.2, we have [Ag/p : A?(/F] = [Er : Ng/p(Ek)] =
|H(G, Ex)|. Since I = Iy, we have [A?{/F : Ar] = 1. Thus

|HO(G,Clio)| = [Ak/r : Ak/rllAF : Ni/p(Cl)]
= |H(G, Eg)|[AF : Nr/r(Clk)).

Hence we get the result.
(v) It follows from Theorem 3.7 in [3] and (i). a

Proposition 3.2. Let K/F be a finite unramified cyclic extension with G =
Gal(K/F). Then the following conditions are equivalent:
() ak/r = ag/p, i€, Axjr = Ay p-

(ii) [Er N Ng/p(K*): Ng/p(Eg)]) = 1.
(iii) H°(G,Ek) = 1.
(iv) |HY(G,Ek)| = ho = [K : F].
Proof. (1) (ii) It follows immediately from Lemma 2.2 (ii).

(i)« (ili) By Lemma 2.2 (iii), we have [EF : Er N Ng,/p(K*)] = 1, and so

|H(G, Ex)| = [Ep N Ng/p(K*) : Ng/p(Ek)].

Thus we get the result.

(ii)e(iv) It follows immediately from Proposition 3.1 (ii). O

Proposition 3.3. Let K/F be a finite unramified cyclic extension. Then the
following conditions are equivalent:

a)apia%mepry
(11) Ker(NK/F) = Ker(NK/F).
(iii) H°(G,Clg) = 1.
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Proof. (i)=(ii) It generally holds that Ker(Ny, ) C Ker(]vh'/p) A/F(CIO ).
Foranyc€ Ker(NK/p), Ngyr(c) € Cl(}ﬂ]\/'K/F(ClK) = 1. Thus I\er(]\K/F) =
Ker(Ng/F)-

(il)=(iii) Since NK/P €% n Ng/p(Clg)) = ’\’K}F(Cl?p) = Ker(]VK/F) =
Ker(Ng/r), we have Cl% N Nk, p(Clx) = 1. Thus H°(G,Clx) = 1 by Propo-
sition 3.1 (iil).

(iii)=(i) If H(G,Clk) = 1, then Cl% N Nk, r(Clk) = 1 by Proposition 3.1
(iii). Since |CI%] = 0 mod [K : F] (by Proposition 3.1 (ii)) and [N, p(Clx)| =
he/[K : F),

ety
[K:F]

and so Clp = Cl}; x Ng/p(Clk). O

|ClFXNK/F ClK)|—|Cl H/\A/F(('ll\)l hFZ{ClFL

4. Imaginary bicyclic function fields

Let k := Fy(T), the rational function field with constant field F, and A :=
Fy[T]. We set S (k) := {oc}, where oo is the prime divisor of k associated to
(1/T). For each monic N € A, let Ky be the N-th cyclotomic function field
and K3 be its maximal real subfield. Fix a prime divisor £ of ¢—1. For a monic
prime P € A, if £ | deg(P), then k( \7?) is the unique f-cyclic real subfield of
K}, Otherwise k(¥/—P) is the unique {-cyclic totally imaginary subfield of
Kp.

Let P and ) be fixed monic primes in A with #jdeg P and £t deg@. Set
Ko := k(V/=Q), K, := k(vV/P), K := k(v¥P,\/=Q) and F; := k(3/—P'Q) for
1<i<f—1. We also set G := Gal(K/k ) and G; := Gal(K/F;).

Lemma 4.1. H°(A, Eg,) is trivial, where A = Gal(K, [k).

Proof. At first we note that P is the only finite prime of & which is (totally)
ramified in K. Then, by Theorem 1.5 in [4], we have ag, /1 = 1 and so a[}‘,l/k =
1. Thus |HY(A, Ek,)| = ¢ by Proposition 1.1 in [4]. Since the Herbrand
quotient Q(Ek,) with respect to A is 1/¢, we have |[HY(A, Eg,)| = 1. O

Theorem 4.2. Let K and F; be as above. Then, for 1 <i<{¢-1, K/F; isa
finite unramified cyclic extension of degree £, and moreover the followings hold:

(i) Gk/r, = HF,.

-1

(ii) b, = 0mod £ for 1 <i< € —1 and hi = hxyhs, hTf
i=1
(ii) H°(G;, Ex) = 1.

(iv) ak/r, = a(IJ\’/F,’ i, Ax/r, = A(;(/F,-‘

(V) ho = ¢,

(vi) H%(G;,Clk) = 1 or cyclic group of order {.
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Proof. P and () are the only ramified finite primes of k which are ramified
on K, and e(P,K/k) = e(P,F;/k) = e(Q,F;/k) = e(Q,K/k) = £ by Ab-
hyankar’s Lemma ( [6, III. 8.9 Proposition]). Thus K/F; is unramified at all
finite primes. Since oo is totally ramified in Ky and splits completely in K,
we have e(oco, K/k) = £. Thus e(poo, K/F;) = 1 for any pe € Seo(F;). Hence
K C Hp,, and so K/F; is a finite unramified cyclic extension of degree ¢.

(i) follows immediately from Proposition 3.1.

(ii) By Proposition 3.1 (i), we have hp, = 0 mod £. Since F; and Ky are
totally imaginary extensions over k, Er, = Ex, = F;. Thus, by the Main
Theorem in [10], we have

where p = [Eg : Ek,]. It remains to show that ¢ = 1. Since K] is the maximal
real subfield of K, by Lemma 2.2 in [1], p = 1 or £. But any primes 9 of K;
lying over @ is totally ramified in K. Thus ¢ = 1.

(iii) Since Ex = Ek,, we have H°(G,, Ex) ~ H%(A,Ek,) = 1 by Lemma
4.1.

(iv), (v) are immediate consequences of Proposition 3.2 and (iii).

(vi) Since |CI%, | = ¢, we have |Cl% N Ng/r, (Clik)| =1 or £.

Thus |H%(G;,Clk)} = 1 or £ by Proposition 3.1 (iii). Thus H(G;,Clg) =1
or cyclic group of order £. O

Corollary 4.3, Let K and F; be as in Theorem 4.2. Then

(i) aK/Fi = ag(/Fi = hFi/Z'
(ii) HYG;, Ex) is a cyclic group of order ¢.

Proof. Both (i) and (ii) are immediate consequences of Proposition 3.2, Theo-
rem 4.2 and Proposition 3.1. O

Let Ng : Clg — Hl_ Clp, and jg : HZ 1ClF — Clg be the homomot-
phisms defined by N (¢) = (Ng/p, (¢), ..., Nk/p,_,(¢)) and jr(e1,...,eo1) =

[1:Z1 jx/r. (&), respectively.
Theorem 4.4. If hx, =1, then the following conditions are equivalent:
() h'Kl =L
(i) hyx = I_L 1GK/F,1€ ClK—EBz 1AK/F
(i) Nk 4s injective with Ng (Clg) = [1.Z) Ni/r,(Clk).
(iv) jx is surjective with kernel HZ 1Cl0

Proof. (i) < (ii) By Theorem 4.2 (ii) and Proposition 3.1 (i), hg, = 1 if and
only if hg = [IiZ) ax/r,, Le., Clx = @it Ak/F-
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(i) < (iii) Note that Ng(Clx) C H ]\K/P (Clg). Thus

£—1

| Coker(Ni)| > [T(Clr, : Niyr, (Cl)} = €7,
=1

and so
-1 (-1
IKer(I\’K hF‘
h i L | hp, < [ Ker(N —
K= | Coker(Ng H | Ker(Nk Iz:l 14
Hence hg, = 1 € hx = [['2) M & Ker(Nk) = 1 and | Coker(Ng)| = ¢!~
< Nk is injective with Ng (Clk) = Hf.:l Nk r, (Cli)-
{i) & (iv) Note that Hf;ll Cl%l C Ker(jg). Thus
-1
[T et = ¢ < [Ker(jx)l,
i=1
and so
Ly 1 -1
| Coker(jix )| : hr,
hg = 77— hg, < |Coker(jx —.
K [KCY(JK)| II:_I] Fi > | (]K)| 1l /

Hence hge, =1 & hg = Hé ! hFl & Coker(jx) = 1 and Ker(jx) = Hf;ll i,
& jk is surjective with Ker(]K) = Hf:]] Cloz. O

Corollary 4.5. Suppose that hie, = 1. If hg, = 1, then Hg is the compositum
of the Hp,,...,Hp,_,, i.e., ﬂf 11(,11 % = 1, where o; i a generator of G; =
Gal(K/F;). When £ =2 (q is odd), the converse also holds.

Proof. At first, we show that Ker(Ny) = ﬂl l(,l1 7. Clearly, Cl}{”' C
Ker(Ng,r,) and Ker(Ng) = ()2} Ker(Ny,z,). We also have | Coker(Ny,p, )| =
[K : F;] = ¢ by Class field theory. It follows from the exact sequence

1 — Ker(Ng/p,) — Cli Ners, Clp, — Coker(Ny/p,) — 1

that IKer(NK/F,.)[ = lhig /hp, = hl\/aK/E = ICG{U"I. Thus Ker(NK/F,) =
Cl}- %, and so Ker(Ng) = ﬂc 1C’l1 7. By Theorem 4.2 (i), Gal(Hg /Hpg,) ~
Cl1 7¢, Thus it follows from Theorem 4.4 (iii) that Hg is the compositum of
the le,...,HFZ_l.

When ¢ = 2 (¢ is odd), Hx = Hp, (& Clj7° = 1) implies that Cly =
Ak, Thus hg, =1 by Theorem 4.4. O

Proposition 4.6. For 1 < i < /-1, the {-rank of Ak/r, is equal to g; or
M 24 —0; 1-0’1 2
0; + 1, where g; = dimy, ((,l;\, /Cl(K ) ).
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Proof. At first, we note that
Cli ™ = Ker(Niyr,) C Ker(Ni/r,) = Nig) o (Cl, N Nigyr, (Clic))
and
HY(Gi, Ak/r,) = Ag/F, /Aﬁ{/p,. ~ HY (G, Axsr,) = Ker(Ng/p,) N Ag/r,,
H(G4,Cli %) = Ker(Nic/p,) N Ag sy = HY(Gy, CLT %) = Cliot jeiii=os"

as [Fe-vector spaces. Thus, f-rank of Ax,r, = dimp, (Ker(ﬁK/Fi) N Ak/F,)-

The morphism Nk, Ker(NK/Fi) - ClY, NNk r, (Clk) induces the following
injective morphisms

Ker(ZVK/Fi) N AK/F,- o KQI(NK/E.)

< Cl% N Ng/p (Clg).
Ker(NK/Fi)ﬂ.AK/Fi Ker(NK/Fz.) Fi K/Fi( K)

By Proposition 3.1 (iii) and Theorem 4.2 (iv), |Cl%, N Ny, (Clx)| = 1 or £.
Thus ](Ker(ﬁK/Fi) N Ak/r;)/ (Ker(Ng/r,) 0 Ag/r;)| = 1or £, and so f-rank of
Ag, is equal to dimg, (CIL=7 /€I or dimg, (L7 /1A +1. O

Corollary 4.7. Suppose that hx, = 1. If hg, =1, then

£-1 £-1
S 0i < torank of Clie <3 i+ (€~ 1).

=1 =1

Proof. It follows immediately from Theorem 4.4 (ii) and Proposition 4.6. O

Remark 4.8. When £ =2 (q is odd), if kg, = hk, = 1, then Clx = Ak, and
Cl}(_"l = 1. Thus g1 = 0, and so the #-rank of Clf is equal to 0 or 1 (compare
to Proposition 5 (ii) in [9]).

Let N k = jk o Ng be the endomorphism of Clx defined as composition of
NK and jK-

Proposition 4.9. If the endomorphism Nk of Cli is injective or surjective,
then
(i) hx, = hg, =1.
(i) H*(G;,Clg) =1 for any integer n and 1 <i < £ —1.
(iii) €-rank of Cli is equal to Zf;ll 0i-

Proof. Since Clg is a finite abelian group, if N K 1s injective or surjective, then it
is an automorphism. The condition that Nk is an automorphism is equivalent
to the condition that Ng is injective and jg is surjective with Hf;ll Clp, =
Nk(Clg) x Ker(jx). Then Nk (Clx) C [IZ; Ni,r, (Cli) and |[Ng(Clk)| =
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hg. Thus
£—1
[lee
zjil £—1 -1
- [ [Icte : ] Muse (czK)] [ TT Vic/r (Clx) = Nk (cz,\»)] [Nk (Cly) : 1]
i=1 =1 =1

-1
— gt [H Ni/p (Clic) : NK(czK)} hic.
i=1
By Theorem 4.2 (ii), we have hix, = hx, = land Ng(Clg) = Hf;ll Ny p (Clk).
Then Clg = Ni(Clk) = [1:2) Ni/w, (Clg). Since Nip, (Clg) C Ag/r,, by
Theorem 4.4 (i), we have Nk, p,(Clk) = Ag/p, for all 1 <i < £~ 1. Thus
HY%(G;,Clg) = 1, and so H"(G;,Clg) = 1 for any integer n. By Proposi-
tion 3.1 (iii), we also have Cl%l N Nk/r,(Clk) = 1. In the proof of Proposi-
tion 4.6, ]Ker(ﬁK/Fi) NAg/r| = | Ker(Ng/p,) N Agp,| and so the f-rank of
A;\-/Fl is equal to ;. Thus, by Theorem 4.4 (ii), the f-rank of Clg is equal to
Yish o U

Remark 4.10. When ¢ = 2 (g is odd), if the endomorphism Nk of Clg is
injective or surjective (i.e., automorphism), then the f-rank of Cly is equal to
0 (compare to Proposition 7 (iii) in [9]).

Now we consider the case £ = 2 (¢ is odd). Then P and () are monic primes
in A of even and odd degree, respectively. Set F := k(y/—PQ) and

A = dimg, (€957 /1T for i > 1,

where Clp2 denotes the Sylow 2-subgroup of Clr and 7 is the generator of
Gal(F/k). Then A\; = 1 (Theorem 2.1 in [7]), and by section 3. part (i) in [7],
we have

S0 i (@/P)=-1,

where (/) is the Legendre symbol. Thus, hp # 0 mod 4 (i.c., 2||hr) if and only
if (Q/P) = —1. We follow exactly the same process as in [9, Proposition 6] to
get the following.

- {1 if (Q/P) =1,

Proposition 4.11. If hg, = hx, = 1, then the following conditions are
equivalent:
(i) (@/P) =-1.
(il) hg Z0mod 4, i.e., 2||hg.
(iii) 2-rank of Clyx is equal to 0, i.e., (2, hg) = 1.
(iv) H"(G1,Clyk) =1 for any integer n, where G = Gal(K/F).
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