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COMPETITION INDICES OF TOURNAMENTS
Hwa Kyung Kim

ABSTRACT. For a positive integer m and a digraph D, the m-step com-
petition graph C™ (D) of D has the same set of vertices as D and an edge
between vertices u and v if and only if there is a vertex x in D such that
there are directed walks of length m from u to z and from v to x. Cho
and Kim [6] introduced notions of competition index and competition
period of D for a strongly connected digraph D. In this paper, we extend
these notions to a general digraph D. In addition, we study competition
indices of tournaments.

1. Preliminaries and notations

In 1968, Cohen [8] introduced the notion of competition graph in connection
with a problem in ecology. The competition graph of a digraph D, denoted by
C(D), has the same vertex set of D, and there is an edge between vertices x and
y in C(D) if and only if there is a vertex z such that (x,z) and (y,2) are arcs
of D. Since the notion of competition graphs was introduced, there has been
a very large literature on competition graphs. For surveys on the literature of
competition graphs, see [11]. In addition to ecology, their various applications
include applications to channel assignments, coding, and modeling of complex
economic and energy systems.

Recently, Cho et al. [7] introduced the m-step competition graph, a general-
ization of the competition graph. Let D be a digraph (with or without loops)
with vertex set {vy, v, ...,v,}. Given a positive integer m, we say that a ver-
tex v of D is an m-step common prey for v; and v; if there are two directed
walks of length m, one of which is from v; to v, and the other from v; to vi.
Then the m-step competition graph of D, denoted by C™(D), has the same
vertex sct as D, and there is an edge between vertices v; and vy (v; # vj) if
and only if v; and v; have an m-step common prey in D. The m-step digraph
of D, denoted by D™, has the same vertex set as D and an arc (v;,v;) if and
only if there is a directed walk of length m from v; to v;. Then we have the
following proposition.
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Proposition 1.1 (Cho et al. [7]). For any digraph D (possibly with loops) and
positive integer m,

Cc™(D) = C(D™).

The concept of m-step digraph is not new, and some asymptotic behavior
of the digraph sequence D,D? D3, ...,D™, ... is well known (see [1, 12, 17]
and for undefined graph terminology see [4, 7]). This motivated us to study
some asymptotic behavior of the competition graph sequence C*(D), C?(D),
C3(D), ..., C™(D), .... Note that this graph sequence is the same as C(D?),
C(D?*), C(D?), ...,C(D™), ... by Proposition 1.1.

For the two-element Boolean algebra B = {0,1}, B,, denotes the set of all
n x n (Boolean) matrices over B. Under the Boolean operations, we can define
matrix addition and multiplication in B,,. Let D be a digraph with vertex set
{v1,v2,...,vn}, and A = [a;;] be the (Boolean) adjacency matrix of D such
that a;; is one if and only if (v;,v;) is an arc in D. Notice that for a positive
integer m, the (Boolean) m-th power A™ = [b;;] of A is a Boolean matrix such
that b;; is one if and only if there is a directed walk of length m from v; to v;
in D. Thus two rows ¢ and i’ of A™ have non-zero entry in the j-th column if
and only if vertex v; is an m-step common prey of vertices v; and vy in D.

For a Boolean matrix A, the row graph R(A) of A is the graph whose vertices
are the rows of A, and two vertices in R(A) are adjacent if and only if their
corresponding rows have a non-zero entry in the same column of A. This notion
was studied by Greenberg et al. [9]. From the definition of row graphs and
m~-step competition graphs, the following proposition follows immediately.

Proposition 1.2 (Cho et al. [7]). A graph G with n vertices is an m-step
competition graph if and only if there is a Boolean matriz A in B, such that G
is the row graph of A™.

Note that for a digraph D and its adjacency matrix A, the graph sequence
CY(D),C*(D),C3(D),...,C™(D),...is equivalent to the row graph sequence
R(A), R(A?), R(A?%), ..., R(A™), ... by Proposition 1.2.

2. Competition indices and competition periods of digraphs

For a digraph D of order n and its n x n adjacency matrix A, consider a
digraph sequence D, D?, D3 ... D™, ...that is equivalent to a matrix sequence
A A% A% ... A™,.... Since the cardinality of the (Boolean) matrix set B, is
equal to a finite number 2"2, there is a smallest positive integer ¢ such that
A7 = AT (equivalently D? = D?t") for some positive integer ». Such an
integer g is called the indez of D and is denoted by index(D). Then, there is also
a smallest positive integer p such that A7 = A*P (equivalently D? = D%P)
where ¢ = index(D), and such an integer p is called the period of D and is
denoted by period(D).

Cho and Kim [6] defined the competition index of D, denoted by cindex (D)
for a strongly connected digraph D as follows: For a strongly connected digraph
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D, the competition index of D is a smallest positive integer ¢ such that C¥(D) =
C""(D) for some positive integer r. But this definition is not suitable for a
gencral digraph. Consider the following digraph Dj shown in Figure 1 which
is not strongly conunected. We have

C'(Ds) = C*(D3) = C*(D5) # CY(D5) = C°(Ds) = - -~

If we define the competition index g such that CYD) = C9*7(D) for some
positive integer r, we have the competition index of Dj is 1 since C(Dj) =
C*(D;). But this graph sequence C'{Ds),C*(Ds),...,C™(Ds).... is stable
when > 4.

Figure 1. Ds

Considering this limitation on the definition of a competition index for a
strongly connected digraph, we extend the notion of cindex(D) to a general
digraph. Consider the competition graph sequence C1(D), C?*(D), C¥(D),. ..,
C™(D),.... By Proposition 1.1 and 1.2, this graph sequence is equivalent to
the row graph sequence R(4). R(A?), R(4*),..., R{4™)..... Thus there is
a smallest positive integer ¢ such that CHi(D) = C97"H(D) (equivalently
R{A9H) = R(A9+7+)) for some positive integer r and all nonnegative integer
i. Such an integer ¢ is called the competition index of D and is denoted by
cindex(D). For g = cindex{D). there is also a smallest positive integer p such
that CY(D) = C97P(D) (equivalently R(AY) = R(A7"P)). Such an integer
p is called the competition period of D and is denoted by cperiod(D). From
the definition of index(D) and cindex({D), the next proposition immediately
follows.

Proposition 2.1. For any digraph D, we have index{D) > cindex(D).

For a strongly connected digraph D, the greatest common divisor of the
lengths of cycles of D is called the indez of imprimitivity of D, and is denoted
by k(D). (If n = 1 and D does not contain a loop, k(D) is undefined.) If
k{D) =1, we say D is primitive. For a primitive digraph D and its adjacency
matrix A, the exponent exp{D) of D has been defined to be the smallest positive
integer ¢ such that A¥ is a positive matrix for all integers & > ¢. Note that
for a primitive digraph D, exp(D) = index(D) and cindex{D) is the smallest
integer g such that the row graph of A¥ is a complete graph for any k > ¢.
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It is well known that the index of imprimitivity of D is equal to period(D)
for a strongly connected digraph D. (For surveys of the literature of exponent
(index) and period, see [3, 13, 14, 16, 17].) The competition period of a strongly
connected digraph is 1 by the following theorem.

Theorem 2.2 (Cho and Kim [6]). If there is no vertex whose outdegree is zero
in a digraph D, we have
cperiod(D) = 1.

It follows from Theorem 2.2 that cperiod{D) = 1 for a strongly connected
digraph D.

Consider the following digraph D4 shown in Figure 2. The vertex u has only
loop in D4 and Dy is not strongly connected since the outdegree of w is zero.
Vertices v; and u have only (2m — 1)-step common prey w for any positive
integer m. In addition, vy and u have only 2m-step common prey w for any
positive integer m. The other pair of vertices do not have an m-step common
prey for any positive integer m. Therefore we have

CUDy) =C¥*(Dy) == C>™(Dy) =---,
CHDy) =C*Dy) = =C>™(Dy) = --- .
Since CY(Dy4) # C*(Dy), we have cindex(D4) = 1 and cperiod(Dy) = 2.

w
°
. \ )
15
FIGURE 2. Dy

The upper bound of competition index of a strongly connected digraph was
studied in [6]. For a positive integer n, let w; = wy =1 and w, = [L_g"—ﬁ’
when n > 3. For each integer n(n > 3), any digraph isomorphic to the following
digraph shown in Figure 3 is called a Wielandt digraph of order n, and is
denoted by W,,. For n > 3, we have cindex(W,,) = w, in [6]. The next theorem
shows that the maximum on competition indices of strongly connected digraphs
is wn.

Theorem 2.3 (Cho and Kim [6]). Let D be a strongly connected digraph D of
order n. Then we have cindex(D) < w,. The equality holds only when D is a
Wielandt digraph when n > 3.
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Ficure 3. Wielandt digraph W, of order n

We do not know a good upper bound of competition indices of general di-
graphs. But we do know that the maximum on competition indices is not
attained by a Wielandt digraph whose index (exponent) is the maximum on
indices of digraphs having same order.

3. Competition indices of strongly connected tournaments

An n-tournament T, is a digraph with n vertices in which every pair of
vertices is joined by exactly one arc. Assigning an orientation to each edge of
complete graph results in a tournament. Let the score s(v) be outdegree of
v, i.e., the number of arcs from v. A vertex z is called a sink if s(z) = 0 in
a tournament. There is at most one sink in a tournament. Example 1 shows
competition indices of tournaments of order 3.

Example 1. We have only two 3-tournaments C and ¢ in Figure 4. And we
have that cindex{C) = 2 and cindex(C") = 1.

[ ] -
C '

FiGure 4. All tournaments of order 3.

Theorem 3.1 (Moon and Pullman [13]). An n-tournament T, is primitive if
and only if T), is irreducible (strongly connected) and n > 3.
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Theorem 3.2 (Moon and Pullman [13]). Each vertex of a strongly connected
tournament T,,, when n > 3, is contained in ot least one simple cycle of each
length between 3 and n, inclusive.

Theorem 3.3. For any strongly connected n-tournament T,,, we have
cindex(T},) < 4.

Proof. Tt is trivial if n < 2. The digraph C' in Figure 4 is the only strongly
connected 3-tournament. Thus if n = 3, we have

cindex(T,,) = 1.

Suppose n > 3. Then T, is primitive by Theorem 3.1. Take two vertices = and
y in T,, there exists an arc between z and y. Without loss of generality, we
may suppose that there is an arc (z,y). By Theorem 3.2, there exist a 3-cycle
containing z and a 4-cycle containing y. Therefore, z and y have a 4-step
common prey y. Vertices z and y have an m-step common prey when m > 4

since s(y) > 1. Thus competition index of T}, is at most 4. O
Vg U3
°
e
U1 (%)
E

FIGURE 5. The competition index of F is 4.

This bound is sharp as it can be achieved by the strongly connected 4-
tournament F given in Figure 5 as vertices v, and v3 have a 4-step common prey
vz while they do not have a 3-step common prey. Thus we have cindex(E) = 4.

Theorem 3.4. For any strongly connected n-tournament T,, where n > 5, we
have

cindex(T,) <3
and the bound is sharp for all n > 5.

Proof. Since T, is strongly connected, there is no sink. Thus, if two vertices
have an [-step common prey, then they have an m-step common prey for m > L.
Therefore, it suffices to show that every pair of vertices has a p-step common
prey for some p € {1,2,3}.
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Take two vertices x and y. Without loss of generality, we may assume that
there is an arc (z,y). Since T, is strongly connected, s(y) > 1. We take an
out-neighbor of y and denote it by z. If (z, z) is an arc of T,,, then z is a 1-step
common prey of £ and y. Thus we may assume that (z,z) is an arc of T,,.
Suppose that s(y) > 2. Then there exists another out-neighbor w(# z) of y.
Since T, is a tournament, either (z,w) or (w,z) is an arc of T,,. If (z,w) is an
arc of T,,, then w is a 2-step common prey of z and y. If (w,z) is an arc of
T,., then z is a 2-step common prey of z and y. Thus, if s(y) > 2, then = and
y have a 2-step common prey. Now suppose that z is the only out-neighbor of
y. Suppose that s(z) > 2. Then there is an out-neighbor w of z other than
x. Since s(y) = 1 and T, is a tournament, there is an arc from w to y. Since
T, is a tournament, (z,w) or (w,z) is an arc of T,,. If (z,w) ia an arc of Tp,
then w is a 3-step common prey of x and y. If (w, ) is an arc of T,,, then z is
a 3-step common prey of z and y. Now it remains to consider the case where
s(z) = 1, i.e., x is the only out-neighbor of z. By Theorem 3.2, there is a 5-cycle
containing y since n > 5. Since z (resp. z) is the only out-neighbor of y (resp.
z), every 5-cycle contains vertex sequence yzx. Thus a 5-cycle containing y
has vertex sequence yzzuvy for some vertices u, v distinct from z, y, z. Then
there are two directed walks zuvy and yzzy and so y is a 3-step common prey
of  and y. Therefore we have

cindex(7T,) < 3.

To show that the bound is sharp, define an n-tournament F = (V, A4) forn > 5
as follows:

V = {Uhvg,...,vn},
4 = {(Ui,Uj)]7:<j}\{('l/‘l,‘l}“)}u{(1/’,1,1}1)},

Since there is an n-cycle in F', F is strongly connected. And v,-; and v,
have a 3-step common prey but do not have a 2-step common prey. Therefore,
cindex(F') = 3. O

The out-neighborhood of v, denoted by N*(v), is the set of all vertices
outgoing from v.

Example 2. Define an n-tournament F' = (V, A) for n > 3 as follows:

Vo= {v,vs,...,0n},
A {(visvp) 14> I\ {vigr,vi) [ <n =10 {(vigo, vi) | i < 0= 2}]
W{(vi,vie1) i <n =1} U {(vi,vis2) | § < n =2}

Then [ is strongly connected since there is an n-cycle in F’/. Take two vertices
x and y in F'. We may assume that there exist an arc (r,y). Then we know
s(y) > 2 in F'. Take two vertices z,w € Nt(y). Since F’ is a tournament,
either (z,w) or (w,z) is an arc of F'. If (z,w) is an arc, then w is a 2-step
common prey of z and y. If (w, z) is an arc, then z is a 2-step common prey of



392 HWA KYUNG KIM

x and y. Thus, cindex(F') < 2. Since v; and v3 have no 1-step common prey,
we have cindex(F”) = 2.

4. Competition indices of tournaments

In this section, we study competition indices of tournaments which are
not strongly connected. If there is no sink in a tournament T,, we have
cperiod(T,,) = 1 by Theorem 2.2.

Theorem 4.1. For any tournament T,, without sink, we have
cindex(T,) < 4,
and the bound is sharp for all n > 4.

Proof. Since there is no sink, it is true that if two vertices have an m-step
common prey, then they have a (m + 1)-step common prey. Therefore it is
suffices to show that every pair of vertices has a p-step common prey for some
p € {1,2,3,4}, or has no m-step common prey for any positive integer m.
Suppose x and y be vertices that have an m-step common prey for some positive
integer m. If x and y are in the same strong component, £ and y have at least
4-step common prey by Theorem 3.3. In case where z and y are in different
strong components, we may assume that there is an arc (z,y). Since there is
no sink, there exists some vertex z such that (y, z). There is no arc (2, z) since
we assume that z and y are in different strong components. Thus there is an
arc (z,z) and so z is a 1-step common prey of vertices z and y. Therefore, we
have
cindex(T},) < 4.

Let us construct an n-tournament 7' such that cindex(T) = 4 for n > 4. Let
{v1,v2,v3,v4,...,un} be the vertex set of T. Let E denote the subtournament
induced by {vi,vo,v3,v4} (see Figure 5) and other arcs (v;,v;) if and only if
i > j for ¢ > 5. Then v, and v; have an m-step common prey for any positive
integer m where k > 5. But v; and v3 have a 4-step common prey but do not
have a 3-step common prey. Thus we have cindex(7") = 4 and the given bound
is sharp for all n > 4. |

Corollary 4.2. There exists an n-tournament T, (n > 5) without sink such
that cindex(T,) =7 for 1 <r < 4.

Proof. The case where r = 2,3,4 is taken care of by Example 2, Theorem 3.4,
and Theorem 4.1, respectively.
Define an n-tournament H = (V, A) for n > 4 as follows:
V = {’1)1,1)2,’1)3,...,'0”},
A = {i,5) 11> 71\ {(vs,v1)} U {(v1,v3)}-
If either k > 4and l€{1,2,...,n}\{k}or ke{1,2,3} and [ €{1,2,...,n}\{k},
v and v; have an m-step common prey for any positive integer m. For k,1 €



COMPETITION INDICES OF TOURNAMENTS 393

{1,2,3} such that k # [, vy and v; do not have an m-step common prey for
any positive integer m. Thus we have cindex(H) = 1. O

An n-tournament S,, is transitive if its vertices can be labeled as vy, v2, ..., vy
in such a way that there is an arc (v;,v;) if and only if i < j.

Lemma 4.3. If S, is an n-transitive tournament with n > 3, then we have
cindex(S,) =n - 1.

Proof. Since S, is transitive, there is a vertex labeling vy, ve,..., v, in Sy
in such a way that there is an arc (v;,v;) if and only if ¢ < j. Thus each
pair of vertices has a 1-step common prey v,. If i < j < n, then v; and v;
have an m-step common prey for m < n — j, but have no m-step common
prey for m > n — j. We can check that v; and v, have an (n — 2)-step
common prey but do not have an (n — 1)-step common prey. Therefore, we
have cindex(S,) =n — 1. 0

Lemma 4.4. Let T,, be a tournament with a sink for an integer n > 5. Let
(z,y) be an arc in T, where y is not sink and S be the subtournament of T,
induced by N*(y) U {y}. Then the following are true:

(i) If z and y are in the same strong component, then x and y have an
1-step common prey for any positive integer .

(i) If x and y are in different strong components and S contains a non-
trivial strong component, then x and y have an l-step common prey for
any positive integer l.

(iii) If z and y are in different strong components and S contains no non-
trivial strong component, then r and y have an (m — 1)-step common
prey but do not have an l-step common prey for any 1 > m where
m = s(y) + L.

Proof. Let z be a sink in T,,. Take two vertices x and y. Since . is a sink, there
are arcs (x,z) and (y,z). Thus, z is a I-step common prey of & and y. If z and
y arc in the same strong component, then x and y have an /-step common prey
z for any positive integer [. Assume that  and y are in different components.
Suppose that S contains a nontrivial strong component T. Let w be a vertex
in 7. Then there are directed walks zyz and ywz and so z is a 2-step common
prey of z and y. Since T is a strongly connected tournament with at least 3
vertices, w is contained in a 3-cycle in T by Theorem 3.2, Thus, z is an I-step
common prey of z and y for any ! > 2. Suppose that S contains no nontrivial
strong component. Then S is transitive and its order is m = s(y) + 1. Thus z
and y have an (m — 1)-step common prey but do not have an I-step common
prey for any I > m. O

Theorem 4.5. For any tournament T,, where n > 5, we have

cindex(T,) <n — 1.
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Proof. If T,, has no sink, it holds by Theorem 4.1. Suppose T, has a sink
z. Take two vertices z, y. We may assume that there is an arc (z,y). Then
z # z. If y = z, then 2 and y do not have an m-step common prey for any
positive integer m. Now assume that y # z. By Lemma 4.4, z and y have an
[-step common prey for any positive integer [, or z and y have an (m — 1)-step
common prey but do not have an [-step common prey for any | > m where
m = s(y) + 1. Thus we have cindex(T,) < n — 1 since s(y) < n — 2. Lemma
4.3 shows that the bound is sharp. O

We call I,, competition index set of tournaments with order n where
I, = {cindex(T,,) | T, is n-tournament}.

Theorem 4.6. There is no n-tournament whose competition index (n — 2)
wheren > 6 and this is the only gap in the competition index set of tournaments
with order n.

Proof. Suppose there exists an n-tournament T, such that cindex(T,) = n — 2.
If T, has no sink, then cindex(7,) < 4 < n — 2 by Theorem 4.1. Therefore T,
has one sink z. If there is no cycle in T),, then T;, is transitive and cindex(T},,) =
n—1by Lemma 4.3. We may assume that T, has a cycle. Then T,, has a cycle
of length at least 3 since there is no 2-cycle and 1-cycle in a tournament. Take
two vertices z and y. We may assume there is an arc (x,y). Then z # z and
we may assume that y # 2. In cases (i) and (ii) of Lemma 4.4, we have z and
y have an l-step common prey for any positive integer [. In case (iii) of Lemma
4.4, we have s(y) < n — 4 since S contains no cycle in this case. Thus we have
cindex(T,,) < n — 3. It contradicts that cindex(T,,) = n — 2. Therefore there is
no tournament whose competition index is n — 2.

There is an n-tournament H such that cindex(H) = 1, see Corollary 4.2. We
construct a n-tournament 7, such that cindex(T},) = r, where 2 <r < n - 3.
Define an T,, = (V, A) for n > 6 as follows:

Vo= {v1,v2,...,Un—p,...,Un},
A {(vi,v5) |1 <jP\{(v1, vn—r)} U {(vn—p,v1)}.

Then v, is a sink. Take two vertices z and y. For z,y € {v1,...,0n—r},
and y have an [-step common prey for any positive integer { by Lemma 4.4 (i). If
either ,y € {Vn—ry1,.--,Vn}, 00 T € {v1,...,Un—r} a0d ¥ € {Vn_py1s---,Un},
z and y do not have an I-step common prey for any ! > r by Lemma 4.4 (iii).
Note that v; and v,_,4; have an (r — 1)-step common prey. Then we have
cindex(T,) = r. The proof is completed. d

5. Closing remarks

In this paper, we generalize the concept of the competition index of a digraph
in terms of the notion of m-step competition graph in [7]. In addition, we study
competition indices of tournaments.
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Recently, studies on indices of digraphs have many important results and
variations such as generalized indices (see [2, 3. 12, 15, 18]). Also. since Cohien
introduced the notion of competition graph in 1968, various variations such
as competition common enemy graph, niche graph, p-competition graph have
been defined and studied by many authors (see [11] for survey of literature
of competition graphs). Since the concept of competition index lies between
index theory and competition graph theory, it may be possible to generalize
the notion of competition index in both ways.

Acknowledgement. The author would like to thank an anonymous referee
for his or her outstanding job of suggesting changes.
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