ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION

YANG-HI LEE

ABSTRACT. In this paper, we modify L.Cădariu and V. Radu's result for the stability of the monomial functional equation

$$\sum_{i=0}^{n} {}_{n}C_{i}(-1)^{n-i}f(ix+y) - n!f(x) = 0$$

in the sense of Th. M. Rassias. Also, we investigate the superstability of the monomial functional equation.

1. Introduction

Throughout this paper, let X be a vector space and Y a Banach space. Let n be a positive integer. For a given mapping $f: X \to Y$, define a mapping $D_n f: X \times X \to Y$ by

$$D_n f(x,y) := \sum_{i=0}^n {}_n C_i (-1)^{n-i} f(ix+y) - n! f(x)$$

for all $x, y \in X$, where ${}_{n}C_{i} = \frac{n!}{i!(n-i)!}$. A mapping $f: X \to Y$ is called a monomial function of degree n if f satisfies the monomial functional equation $D_{n}f(x,y) = 0$. The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) := ax^{n}$ is a particular solution of the functional equation $D_{n}f = 0$. In particular, a mapping $f: X \times X \to Y$ is called an additive (quadratic, cubic, quartic, respectively) mapping if f satisfies the functional equation $D_{1}f = 0$ ($D_{2}f = 0$, $D_{3}f = 0$, $D_{4}f = 0$, respectively).

In 1940, S. M. Ulam [27] raised a question concerning the stability of homomorphisms: Let G_1 be a group and let G_2 be a metric group with the metric $d(\cdot,\cdot)$. Given $\varepsilon > 0$, does there exists a $\delta > 0$ such that if a mapping $h: G_1 \to G_2$ satisfies the inequality

$$d(h(xy), h(x)h(y)) < \delta$$

for all $x, y \in G_1$ then there is a homomorphism $H: G_1 \to G_2$ with

$$d(h(x), H(x)) < \varepsilon$$

Received December 3, 2007.

2000 Mathematics Subject Classification. Primary 39B52.

Key words and phrases. stability, monomial functional equation.

for all $x \in G_1$?

In 1941, D. H. Hyers [7] proved the stability theorem for additive functional equation $D_1f=0$ under the assumption that G_1 and G_2 are Banach spaces. In 1978, Th. M. Rassias [20] provided an extension of D. H. Hyers's Theorem by proving the generalized Hyers-Ulam stability for the linear mapping subject to the unbounded Cauchy difference that he introduced in [20]. Th. M. Rassias's Theorem provided a lot of influence for the rapid development of stability theory of functional equations during the last three decades. This generalized concept of stability is known today with the term Hyers-Ulam-Rassias stability of the linear mapping or of functional equations. Further generalizations of the Hyers-Ulam-Rassias stability concept have been investigated by a number of mathematicians worldwide (cf. [5, 6, 8, 9, 11, 12, 14, 17-19, 21-25]). In 1983, the Hyers-Ulam-Rassias stability theorem for the quadratic functional equation $D_2f=0$ was proved by F. Skof [26] and a number of other mathematicians (cf. [2, 3, 4, 10, 13]). The Hyers-Ulam-Rassias stability Theorem for the functional equation $D_3f=0$ and $D_4f=0$ was proved by J. Rassias [15, 16].

In 2007, L. Cădariu and V. Radu [1] proved the stability of the monomial functional equation $D_n f = 0$.

In this paper, we modify L. Cădariu and V. Radu's result for the stability of the monomial functional equation $D_n f = 0$ in the sense of Th. M. Rassias and the superstability of the monomial functional equation $D_n f = 0$.

2. The stability of the monomial functional equation

Since the equalities

$$(1-x^{2})^{n} = \sum_{i=0}^{n} {}_{n}C_{i}(-1)^{i}x^{2i},$$

$$(1-x)^{n}(x+1)^{n} = (\sum_{k=0}^{n} {}_{n}C_{k}(-1)^{k}x^{k})(\sum_{j=0}^{n} {}_{n}C_{j}x^{j})$$

$$= \sum_{i=0}^{n} \sum_{l=0}^{2i} {}_{n}C_{l} \cdot {}_{n}C_{2i-l}(-1)^{l}x^{2i}$$

hold for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$, the equality

$$_{n}C_{i}(-1)^{i} = \sum_{l=0}^{2i} {_{n}C_{l} \cdot {_{n}C_{2i-l}(-1)^{l}}}$$

holds for all $n \in \mathbb{N}$.

Lemma 1. Let $f: X \to Y$ be a mapping satisfying the functional equation

$$D_n f(x,y) := \sum_{i=0}^n {n \choose i} (-1)^{n-i} f(ix+y) - n! f(x)$$

for all $x, y \in X$. Then equality

$$f(2x) = 2^n f(x)$$

holds for all $x \in X$.

Proof. Using the equalities

$$_{n}C_{i}(-1)^{i} = \sum_{l=0}^{2i} {_{n}C_{l}} \cdot {_{n}C_{2i-l}}(-1)^{l}$$
 and $\sum_{i=0}^{n} {_{n}C_{i}}(-1)^{i} = 0$,

the equality

$$n!(f(2x) - 2^n f(x)) = D_n f(2x, (-k)x) - \sum_{j=0}^n {}_n C_j D_n f(x, (j-k)x) = 0$$

holds for all $x \in X$ and $k \in \mathbb{N}$ as we desired.

Now, we prove the stability of the monomial functional equation in the sense of Th. M. Rassias.

Theorem 2. Let p be a real number with $0 \le p < n$ and X a normed space. Let $f: X \to Y$ be a mapping such that

$$||D_n f(x,y)|| \le \varepsilon(||x||^p + ||y||^p)$$

for all $x, y \in X$. Then there exists a unique monomial function of degree $n \in F: X \to Y$ such that

$$(2) ||f(x) - F(x)|| \le \frac{1}{n!} \inf_{k \in \mathbb{N}} (2^p + k^p + 2^n + \sum_{j=0}^n {n \choose j} |j - k|^p) \frac{\varepsilon}{2^n - 2^p} ||x||^p$$

holds for all $x \in X$. The mapping $F: X \times X \to Y$ is given by

$$F(x) := \lim_{s \to \infty} \frac{f(2^s x)}{2^{ns}}$$

for all $x \in X$.

Proof. By (1), we get

$$||n!(f(2x) - 2^n f(x))|| = ||D_n f(2x, (-k)x) - \sum_{j=0}^n {}_n C_j D_n f(x, (j-k)x)||$$

$$\leq \varepsilon (||2x||^p + ||kx||^p + \sum_{j=0}^n {}_n C_j (||x||^p + ||(j-k)x||^p))$$

$$= (2^p + k^p + 2^n + \sum_{j=0}^n {}_n C_j ||j-k|^p) \varepsilon ||x||^p$$

for all $x \in X$ and $k \in \mathbb{N}$. Hence

(3)
$$||f(x) - \frac{f(2x)}{2^n}|| \le \frac{\varepsilon}{n! \cdot 2^n} \inf_{k \in \mathbb{N}} (2^p + k^p + 2^n + \sum_{j=0}^n {}_n C_j |j - k|^p) ||x||^p$$

and (4)

$$||f(x) - \frac{f(2^m x)}{2^{nm}}|| \le \sum_{s=0}^{m-1} ||\frac{f(2^s x)}{2^{sn}} - \frac{f(2^{s+1} x)}{2^{(s+1)n}}||$$

$$\le \frac{\varepsilon}{n! \cdot 2^n} \inf_{k \in \mathbb{N}} (2^p + k^p + 2^n + \sum_{j=0}^n {}_n C_j |j - k|^p) \sum_{s=0}^{m-1} \frac{2^{sp}}{2^{sn}} ||x||^p$$

for all $x \in X$. The sequence $\{\frac{f(2^s x)}{2^{sn}}\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{f(2^s x)}{2^{sn}}\}$ converges for all $x \in X$. Define $F: X \to Y$ by

$$F(x) := \lim_{s \to \infty} \frac{f(2^s x)}{2^{sn}}$$

for all $x \in X$. By (1) and the definition of F, we obtain

$$D_n F(x, y) = \lim_{s \to \infty} \frac{D_n f(2^s x, 2^s y)}{2^{ns}} = 0$$

for all $x, y \in X$. Taking $m \to \infty$ in (4), we can obtain the inequality (2) for all $x \in X$.

Now, let $F': X \times X \to Y$ be another monomial function satisfying (2). By Lemma 1, we have

$$||F(x) - F'(x)|| \le ||\frac{1}{2^{ns}}(F - f)(2^{s}x)|| + ||\frac{1}{2^{ns}}(f - F')(2^{s}x)||$$

$$\le \frac{2^{np}}{2^{ns}} \frac{2}{n!} \inf_{k \in \mathbb{N}} (2^{p} + k^{p} + 2^{n} + \sum_{j=0}^{n} {}_{n}C_{j}|j - k|^{p}) \frac{\varepsilon}{2^{n} - 2^{p}} ||x||^{p}$$

for all $x, y \in X$ and $s \in \mathbb{N}$. As $s \to \infty$, we may conclude that F(x) = F'(x) for all x as desired.

Theorem 3. Let p be a real number with p > n and X a normed space. Let $f: X \to Y$ be a mapping satisfying (1) for all $x, y \in X$. Then there exists a unique monomial function of degree $n : X \to Y$ such that

$$||f(x) - F(x)|| \le \frac{1}{n!} \inf_{k \in \mathbb{N}} (2^p + k^p + 2^n + \sum_{j=0}^n {n \choose j} |j - k|^p) \frac{\varepsilon}{2^p - 2^n} ||x||^p$$

holds for all $x \in X$. The mapping $F: X \times X \to Y$ is given by

$$F(x) := \lim_{s \to \infty} 2^{ns} f(2^{-s} x)$$

for all $x \in X$.

Proof. By (3), we get

$$||f(x) - 2^n f(\frac{x}{2})|| \le \frac{\varepsilon}{n! \cdot 2^p} \inf_{k \in \mathbb{N}} (2^p + k^p + 2^n + \sum_{j=0}^n {n \choose j} |j - k|^p) ||x||^p$$

for all $x \in X$ and $k \in \mathbb{N}$. The rest of the proof is similar with the proof of Theorem 2.

3. The superstability of the functional equation $D_n f = 0$

Lemma 4. Let p be a real number with p < 0 and X a normed space. Let $f: X \to Y$ be a mapping satisfying (1) for all $x, y \in X \setminus \{0\}$. Then there exists a unique monomial function of degree $n : F: X \to Y$ such that

(5)
$$||f(x) - F(x)|| \le \frac{2^p + 2^n}{n!(2^n - 2^p)} \varepsilon ||x||^p$$

holds for all $x \in X \setminus \{0\}$.

Proof. As in the proof of Theorem 2, the inequality

$$||f(x) - \frac{f(2^m x)}{2^{nm}}|| \le \sum_{s=0}^{m-1} ||\frac{f(2^s x)}{2^{sn}} - \frac{f(2^{s+1} x)}{2^{(s+1)n}}||$$

$$\le \frac{\varepsilon}{n! \cdot 2^n} \inf_{k \ge n+1} (2^p + k^p + 2^n + \sum_{j=0}^n {n \choose j} |j - k|^p) \sum_{s=0}^{m-1} \frac{2^{sp}}{2^{sn}} ||x||^p$$

holds for all $x \in X \setminus \{0\}$. Since p < 0, we get

$$\inf_{k \ge n+1} (2^p + k^p + 2^n + \sum_{j=0}^n {n \choose j} |j-k|^p) = (2^p + 2^n)$$

for all $x \in X \setminus \{0\}$. The rest of the proof is the same to the proof of Theorem 2.

Now, we prove the superstability of the monomial functional equation.

Theorem 5. Let p be a real number with p < 0 and X a normed space. Let $f: X \to Y$ be a mapping satisfying (1) for all $x, y \in X \setminus \{0\}$. Then f is a monomial function of degree n.

Proof. Let F be the monomial function of degree n satisfying (5). From (1), the inequality

$$||f(x) - F(x)||$$

$$\leq \frac{1}{n} ||D_n(f - F)((k+1)x, -kx) + (-1)^n (F - f)(-kx) + \sum_{i=2}^n {}_n C_i (-1)^{n-i} (F - f)(i(k+1)x - kx) - n! (F - f)((k+1)x)||$$

$$\leq \frac{1}{n} \left[\frac{2^p + 2^n}{n! (2^n - 2^p)} (k^p + \sum_{i=1}^{n-1} {}_n C_{i+1} (ik+i+1)^p + n! (k+1)^p) + (k+1)^p + k^p \right] \varepsilon ||x||^p$$

holds for all $x \in X \setminus \{0\}$ and $k \in \mathbb{N}$. Since $\lim_{k \to \infty} (k^p + \sum_{i=1}^{n-1} C_{i+1}^n (ik+i+1)^p + n!(k+1)^p) = 0$ and $\lim_{k \to \infty} (k^p + (k+1)^p) = 0$ for p < 0, we get

$$f(x) = F(x)$$

for all $x \in X \setminus \{0\}$. Since $\lim_{k \to \infty} k^p = 0$ and the inequality

$$||f(0) - F(0)|| \le \frac{1}{n} ||D_n(f - F)(kx, -kx) + (-1)^n (F - f)(-kx) + \sum_{i=2}^n {n \choose i} (-1)^{n-i} (F - f)((i-1)kx) - n! (F - f)(kx)||$$

$$\le \frac{1}{n} [2 + \frac{2^p + 2^n}{n!(2^n - 2^p)} (1 + \sum_{i=1}^{n-1} {n \choose i+1} i^p + n!)] k^p \varepsilon ||x||^p$$

holds for any $x \in X \setminus \{0\}$ and $k \in \mathbb{N}$, we get

$$f(0) = F(0).$$

References

- [1] L. Cădariu and V. Radu, The fixed points method for the stability of some functional equations, Carpathian J. Math. 23 (2007), no. 1-2, 63-72.
- [2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86.
- [3] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
- [4] ______, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
- [5] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434.
- [6] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
- [7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
- [8] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34. Birkhauser Boston, Inc., Boston, MA, 1998.
- [9] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153.
- [10] K.-W. Jun and Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl. 4 (2001), no. 1, 93-118.
- [11] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001.
- [12] ______, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 204 (1996), no. 1, 221-226.
- [13] H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), no. 1, 358-372.
- [14] Y.-H. Lee and K.-W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1361-1369.

- [15] J. M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glas. Mat. Ser. III 36(56) (2001), no. 1, 63-72.
- [16] ______, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34(54) (1999), no. 2, 243-252.
- [17] Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), no. 1, 106-113.
- [18] _____, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130.
- [19] _____, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. **251** (2000), no. 1, 264–284.
- [20] _____, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
- [21] _____, Report of the 27th International Symposium on Functional Equations, Aeq. Math. 39 (1990), 292-293.
- [22] _____, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378.
- [23] Th. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993.
- [24] Th. M. Rassias, Functional Equations and Inequalities, Mathematics and its Applications, 518. Kluwer Academic Publishers, Dordrecht, 2000.
- [25] ______, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 2003.
- [26] F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.
- [27] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8 Interscience Publishers, New York-London, 1960.

DEPARTMENT OF MATHEMATICS EDUCATION
GONGJU NATIONAL UNIVERSITY OF EDUCATION

Gongju 314-711, Korea

E-mail address: yanghi2@hanmail.net