Evaluation of Myocardial Oxygen Consumption with $^{11}C$-Acetate and 3D PET/CT: By Applying Recirculation Correction Method and Modified One-Compartmental Tracer Kinetic Modeling

$^{11}C$-Acetate와 3차원 PET/CT를 이용한 심근의 산소 소모량 평가: 재순환 교정법 및 수정 단일구획 추적자 동적 모델 적용

  • Chun, In-Kook (School of Medicine, Gachon University of Medicine and Science) ;
  • Hwang, Kyung-Hoon (Department of Nuclear Medicine, Gachon University of Medicine and Science) ;
  • Lee, Sang-Yoon (Neuroscience Research Institute, Gachon University of Medicine and Science) ;
  • Kim, Jin-Su (Molecular Imaging Research Center, Korea Institut of Radiological and Medical Sciences) ;
  • Lee, Jae-Sung (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Shin, Hee-Won (Siemens Medical Solution Systems Ltd.) ;
  • Lee, Min-Kyung (Department of Nuclear Medicine, Gachon University of Medicine and Science) ;
  • Yoon, Min-Ki (Department of Nuclear Medicine, Gachon University of Medicine and Science) ;
  • Choe, Won-Sick (Department of Nuclear Medicine, Gachon University of Medicine and Science)
  • 천인국 (가천의과대학교 의학전문대학원) ;
  • 황경훈 (가천의과대학교 길병원 핵의학과) ;
  • 이상윤 (가천의과대학교 뇌과학연구소) ;
  • 김진수 (한국원자력의학원 분자영상 연구부) ;
  • 이재성 (서울대학교 의과대학 핵의학교실) ;
  • 신희원 (지멘스 메디컬 솔루션) ;
  • 이민경 (가천의과대학교 길병원 핵의학과) ;
  • 윤민기 (가천의과대학교 길병원 핵의학과) ;
  • 최원식 (가천의과대학교 길병원 핵의학과)
  • Published : 2008.08.31

Abstract

Purpose: We intended to evaluate myocardial oxygen consumption ($MVO_2)$ by applying recirculation correction and modified one-compartment model to have a reference range of $MVO_2$ in normal young population and to reveal the effect of recirculation on time-activity curve (TAC). Materials and Methods: In nine normal male volunteers with mean age of $26.3{\pm}4.0$, $MVO_2$ was estimated with 925 MBq (25mCi) of $^{11}C$-Acetate (Neuroscience Research Institute, Gachon University of Medicine and Science, Incheon, Korea) and PET/CT (Biograph 6, Siemens Medical Solution, Germany). Analysis software such as $MATLAB^{(R)}$ v7.1 (Mathworks, Inc., United States), $Excel^{(R)}$ 2007 (Microsoft, United States), and $SPSS^{(R)}$ v12.0 (Apache Software Foundation, United States) were used. Twenty three frames were of $12{\times}10$, $5{\times}60$, $3{\times}120$, $2{\times}300's$ duration, respectively. The modified one-compartmental model and the recirculation correction method were applied. Statistical analysis was performed by using Test of Normality, ANOVA and Post-Hoc (Scheffe's) analysis, and p-value less than 0.05 was considered as significant. Results: The normal reference ranges of $MVO_2$ were presented as $3.18-4.64\;{\times}\;10^{-4}\;ml/g/sec$, $1.91-3.94\;{\times}\;10^{-4}\;ml/g/sec$, $4.31-6.40\;{\times}\;10^{-4}\;ml/g/sec$, $2.84-4.53\;{\times}\;10^{-4}\;ml/g/sec$ and $3.42-5.00\;{\times}\;10^{-4}\;ml/g/sec$ in the septum, the inferior wall, the lateral wall, the anterior wall and the entire wall, respectively. In addition, it was noted that the dual exponentiality of the clearance curve is due to the recirculation effect and that the characteristic of the curve is essentially mono-exponential. Conclusion: $^{11}C$-Acetate is a radiotracer worthwhile to assess $MVO_2$. Re-circulated $^{11}C$ can influence TAC of $^{11}C$ in myocadia and so the recirculation correction must be considered when measuring $MVO_2$.

목적: 정상 성인에서 심근의 산소 소모량에 대한 참고범위를 구하고 시간-방사능 곡선(time-activity curve, TAC)에 재순환이 어떤 영향을 미치는지 알아보기 위하여 재순환 교정법과 수정 단일구획모델을 적용하여 심근 내 산소 소모량을 계산하고자 하였다. 대상 및 방법: 평균연령 $26.3{\pm}4.0$세인 9명의 지원자들에서 925 MBq (25mCi)의 $^{11}C$-Acetate (가천의과학대학교 뇌과학연구소)와 PET/CT (Biograph 6, 독일 지멘스사)를 사용하여 심근 산소 소모량을 계산하였다. 자료의 분석을 위하여 $MATLAB^{(R)}$ v7.1 (Mathworks. Inc., 미국), $Excel^{(R)}$ 2007 (Microsoft, 미국), $SPSS^{(R)}$ v12.0 (Apache Software Foundation, 미국) 등의 소프트웨어들을 사용하였다. PET/CT로 촬영한 영상으로부터 10초마다 12장, 다음 60초마다 5장, 다음 120초마다 3장, 그리고 마지막으로 300초마다 2장 등 0초일 때 1장을 포함하여 총 23개 프레임을 추출하였다. 수정 단일구획모델과 재순환 교정법을 적용하였다. 통계적 분석방법으로 정규성 검정, 분산분석(ANOVA), 사후분석(Post-Hoc analysis) 등을 이용하였고 p값으로 0.05를 적용하였다. 결과: 심근 산소 소모량의 참고범위는 중격 아래벽, 가쪽벽, 앞벽, 전체벽에서 각각 $3.18-4.64\;{\times}\;10^{-4}\;ml/g/sec$, $1.91-3.94\;{\times}\;10^{-4}\;ml/g/sec$, $4.31-6.40\;{\times}\;10^{-4}\;ml/g/sec$, $2.84-4.53\;{\times}\;10^{-4}\;ml/g/sec$ and $3.42-5.00\;{\times}\;10^{-4}\;ml/g/sec$ 등으로 계산되었다. 또한 시간-방사능 곡선의 형태에 관한 기존의 이중적 견해는 결국 재순환된 $^{11}C$-Acetate 때문이며 이 재순환을 교정하면 곡선은 근본적으로 단일 지수함수 형태를 띤다. 결론: $^{11}C$-Acetate 및 3차원 PET/CT로 심근의 산소 소모량을 효율적으로 평가할 수 있으며 안정상태에서는 재순환된 $^{11}C$가 거의 존재하지 않기 때문에 시간-방사능 곡선에 의미 있는 영향을 미치지 않는다..

Keywords

References

  1. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, and Schelbert HR, Radiolabeled Acetate as a Tracer of Myocardial Tricarboxylic Acid Cycle Flux, Circulation Research 1988; 63:628-34 https://doi.org/10.1161/01.RES.63.3.628
  2. Walsh MN, Geltman EM, Brown MA, Henes CG, Weinheimer CJ, Sobel BE, and Bergmann SR, Noninvasive Estimation of Regional Myocardial Oxygen Consumption by Positron Emission Tomography with Carbon-11 Acetate in Patients with Myocardial Infarction, J Nucl Med 1989;30:1798-808
  3. Buxton DB, Nienaber CA, Luxen A, Ratib O, Hansen H, Phelps ME, and Schelbert HR, Noninvasive Quantitation of Regional Myocardial Oxygen Consumption In Vivo With [1-11C]Acetate and Dynamic Positron Emission Tomography, Circulation 1989; 79:134-42 https://doi.org/10.1161/01.CIR.79.1.134
  4. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, and Schelbert HR, Regional Myocardial Oxygen Consumption Determined Noninvasively in Humans With [$1-^{11}C$]Acetate and Dynamic Positron Tomography, Circulation 1989;80:863-72 https://doi.org/10.1161/01.CIR.80.4.863
  5. Henes CG, Bergmann SR, Walsh MN, Sobel BE, and Geltman EM, Assessment of Myocardial Oxidative Metabolic Reserve with Positron Emission Tomography and Carbon- 11 Acetate, J Nucl Med 1989;30:1489-99
  6. Armbrecht JJ, Buxton DB, and Schelbert HR, Validation of [$1-^{11}C$]Acetate as a Tracer for Noninvasive Assessment of Oxidative Metabolism With Positron Emission Tomography in Normal, Ischemic, Postischemic, and Hyperemic Canine Myocardium, Circulation 1990;81:1594-605 https://doi.org/10.1161/01.CIR.81.5.1594
  7. Buck A, Wolpers HG, Hutchins GD, Savas V, Mangner TJ, Nguyen N, and Schwaiger M, Effect of Carbon-11-Acetate Recirculation on Estimates of Myocardial Oxygen Consumption by PET, J NucI Med 1991;32:1950-7
  8. Chin K. NG, Huang SC, Schelbert HR, and Buxton DB, Validation of a model for [$1-^{11}C$] acetate as a tracer of cardiac oxidative metabolism, Am J Physiol 1994;266:1304-15
  9. Hata T, Nohara R, Fujita M, Hosokawa R, Lee L, Kudo T, et al., Noninvasive assessment of myocardial viability by positron emission tomography with 11C acetate in patients with old myocardial infarction. Usefulness of low-dose dobutamine infusion, Circulation 1996;94:1834-41 https://doi.org/10.1161/01.CIR.94.8.1834
  10. Sun KT, Chen K, Huang SC, Buxton DB, Hansen HW, Kim AS, et al., Compartment model for measuring myocardial oxygen consumption using [$1-^{11}C$] acetate, J Nucl Med 1997;38:459-66
  11. Visser FC, Imaging of cardiac metabolism using radiolabelled glucose, fatty acids and acetate, Coron Artery Dis 2001;12(suppl 1):S12-8
  12. Gunn RN, Gunn SR, Turkheimer FE, Aston JAD, and Cunningham VJ, Positron Emission Tomography Compartmental Models: A Basis Pursuit Strategy for Kinetic Modeling, Journal of Cerebral Blood Flow & Metabolism 2002;22:1425-39 https://doi.org/10.1097/01.wcb.0000045042.03034.42
  13. Price JC, Principles of tracer kinetic analysis, Neuroimag Clin N Am 2003;13:689-704 https://doi.org/10.1016/S1052-5149(03)00107-2
  14. Carson RE, Tracer Kinetic Modeling in PET, Positron Emission Tomography: Basic Sciences, Springer (2004), Chapter 6, 127-59
  15. Wu YW, Naya M, Tsukamoto T, Komatsu H, Morita K, Yoshinaga K, et al., Heterogeneous Reduction of Myocardial Oxidative Metabolism in Patients With Ischemic and Dilated Cardiomyopathy Using C-11 Acetate PET, Circ J 2008;72: 786-92 https://doi.org/10.1253/circj.72.786