DOI QR코드

DOI QR Code

Color Removal of Rhodamine B by Photoelectrocatalytic Process Using Immobilized TiO2

고정화 광촉매를 이용한 광전기촉매 공정에서 Rhodamine B의 색도 제거

  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 보건과학부)
  • Published : 2008.06.30

Abstract

A feasibility study for the application of the photoelectrocatalytic decolorization of Rhodamine B (RhB) was performed in a photoelectrochemical reactor with immobilized $TiO_2$ particle. The effects of operating conditions, such as current, electrolyte and pH were evaluated. The experimental results showed that optimum $TiO_2$ dosage and current in the photoelectrocatalytic process were 83.3 g/l and 0.5 A, respectively. It was found that the RhB could be degraded more efficiently by this photoelectrocatalytic process than the sum of the two individual oxidation processes (photocatalytic and electrolytic process). The addition of NaCl increased the initial decolorization rate and reduced reaction time. The optimum dosage of NaCl was 0.15 g/l. The decolorization rate of the photoelectrocatalytic process increased sharply with a decrease in pH value. However when the NaCl was added, the pH effect was not high.

Keywords

References

  1. Madeco, L. C., Zaia, D. A. M., Moore, G. J. and de Santnan, H. : Degradation of leather dye on TiO2: a study of applied experimental parameters on photoelectrocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 185, 86-93, 2007 https://doi.org/10.1016/j.jphotochem.2006.05.016
  2. Yoo, Y. E. : A study on the textile wastewater treatment by sonochemical process. Korean Journal of Environmental Health, 29(5), 10-16, 2003
  3. Lee, B. C., Lee, S. H. and Lee, C. H. : Characteristics of color removal and distribution containing textile wastewater in sewage by ozonation. Journal of Korean Society of Environmental Engineering, 29(10), 1085-1092, 2007
  4. Yoon, Y. S., Ha, B. Y. and Huy, N. V. T. : Characteristics color and COD removal of dying wastewater using electrolytically produced NaOCl solution(1). Textile Science and Engineering, 42(5), 316-322, 2005
  5. Park, Y. S . and Moon, J . H. : T reatment o f Textil e Wastewater by Anaerobic Sludge and Aerobic Fixed- Bed Biofilm Reactor. Korean Journal of Environmental Health, 28(3), 55-63, 2002
  6. Kim, D . S. a nd P ark, Y . S. : D ecol orization of Rhodamine B by Fenton, Fenton-like, and photo-Fenton- like oxidation. Korean Journal of Environmental Health, 33(2), 150-157, 2007 https://doi.org/10.5668/JEHS.2007.33.2.150
  7. Kim, J. K., Jung, H. K., Son, J. Y. and Kim, S. W. : Treatment of highly concentrated organic wastewater by high efficiency $UV/TiO_2$ photocatalytic system. Korean Journal of Biotechnology and Bioengineering, 23(1), 83-89, 2008
  8. Li, G., Qu, J., Zhang, X., Liu, H. and Liu, H. : Electrochemically assisted photocatalytic degradation of Orange : influence of initial pH values. Journal of Molecular Catalysis A: Chemical, 259, 238-244, 2006 https://doi.org/10.1016/j.molcata.2006.06.038
  9. Kim D. S. and Park, Y. S. : A study on the optimization of reflector for reactor using solar light/$TiO_2$. Korean Journal of Environmental Health, 32(4), 373-380, 2006
  10. Catanho, M., Geoffory, R. P. M. and Motheo, A. J. : Photoelectrochemical treatment of the dye reactive red 198 using DSA electrodes. Applied Catalysis B: Environmental, 62, 193-2000, 2006 https://doi.org/10.1016/j.apcatb.2005.07.011
  11. Fox, M. A. and Dulay, M. T. : Heterogeneous photocatalysis. Chemical Reviews, 93, 341-357, 1993 https://doi.org/10.1021/cr00017a016
  12. Tang, W. Z. and An, H. : UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere, 31, 4157-4170, 1995 https://doi.org/10.1016/0045-6535(95)80015-D
  13. Kim, D. S. and Park, Y. S. : Photocatalytic decolorization of Rhodamine B by immobilized TiO2 onto silicone sealant. Chemical Engineering Journal, 116, 133-137, 2006 https://doi.org/10.1016/j.cej.2005.10.013
  14. Chen, J., Liu, M., Zhang, L., Zhang, J. and Jin, L. : Application of nano $TiO_2$ t owards p ol lteud w ater treatment combined with electro-photochemical method. Water Research, 37, 3815-3820, 2003 https://doi.org/10.1016/S0043-1354(03)00332-4
  15. Quan, X., Chen, Su, J., Chen, J. and Chen, G. : Synergetic degradation of 2,4-D by integrated photo- and electrochemical catalysis on a Pt doped $TiO_2$/Ti electrode. Separation and Purification Technology, 34, 73-79, 2004 https://doi.org/10.1016/S1383-5866(03)00177-1
  16. Comninellis, C. and Nerini, A. : Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. Journal of Applied Electrochemistry, 25, 23-28, 1995
  17. Kim, D. S. and Park, Y. S. : Electrochemical decolorization of a Rhodamine B using dimensionally stable anode. Journal of Korean Society on Water Quality, 23(3), 377-384, 2007
  18. Abdullah, M., Low, G. K. and Mat-thews, R. W. : Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium di-oxide. Journal of Physical Chemistry, 94, 6820-6825, 1990 https://doi.org/10.1021/j100380a051
  19. Piscopo, A., Robert, D. and weber, J. V. : Influence of pH and chloride anion on the photocatalytic degradation of organic compounds part I. effect on the benzamide and para-hydroxybenzoic acid in $TiO_2$ aqueous solution. Applied Catalysis B: Environmental, 35, 117-124, 2001 https://doi.org/10.1016/S0926-3373(01)00244-2
  20. Raghu, S. a nd Basha, C . A. : E l ectrochemical treatment of Procion Black 5B using cylindrical flow reactor-a pilot plant study. Journal of Hazardous Materials B, 139, 381-390, 2007 https://doi.org/10.1016/j.jhazmat.2006.06.082
  21. Zanoni, M. V. B., Sene, J. J. and Anderson, M. A. : Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 157, 55-63, 2003 https://doi.org/10.1016/S1010-6030(02)00320-9
  22. Li, G., An, T., Chen, J., Chen, G., Fu, J., Chen, F., Zhang, S. and Zhao, H. : Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions. Journal of Hazardous Materials, B, 138, 392-400, 2006 https://doi.org/10.1016/j.jhazmat.2006.05.083
  23. An, T., Li, G., Zhu, X., Fu, J., Sheng, G. and Kun, Z. : Photoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode- hollow quartz tube photoelectrocatalytic reactor. Applied Catalysis A; General, 279, 247-256, 2005 https://doi.org/10.1016/j.apcata.2004.10.033
  24. Lu, M. C. Roam, G. D., Chen, J. N. and Huang, C. P. : Adsorption characteristics of dichlorvos onto hydrous titanium dioxide surface. Water Research, 30(7), 1670-1676, 1996 https://doi.org/10.1016/0043-1354(96)00037-1
  25. Park, Y. S. : Photocatalytic decolorization of dye using UV/TiO2 and fluidized bed reactor. Journal of the Environmental Sciences, 13(10), 921-928, 2004 https://doi.org/10.5322/JES.2004.13.10.921
  26. Zhang, W., An, T., Xiao, X., Fu, J., Sheng, G., Cui, M. and Li, G. : Photoelectrocatalytic degradation of reactive brilliant orange K-R in a new continuous flow photoelectrocatalytic reactor. Applied Catalysis A: General, 255, 221-229, 2003 https://doi.org/10.1016/S0926-860X(03)00593-3
  27. An, T., Xiong, Y., Li, C. and Zhu, X. : Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor. Journal of Photochemistry and Photobiology A; Chemistry, 152, 155-165, 2002 https://doi.org/10.1016/S1010-6030(02)00211-3
  28. Xizoli, Y., Huixiang, S. and Dahui, W. : Photoelectrocatalytic degradation of phenol using a $TiO_2$/Ni thin-film electrode. Korean Journal of Chemical Engineering, 20(4), 679-684, 2003 https://doi.org/10.1007/BF02706907