Preparation of Poly(butyl methacrylate) Composite Beads containing Carbon Black by Suspension Polymerization

현탁중합법에 의한 카본블랙을 함유하는 폴리뷰틸메타크릴레이트 복합체 입자의 합성

  • Moon, Ji-Yeon (Department of Polymer Engineering, University of Suwon) ;
  • Park, Moon-Soo (Department of Polymer Engineering, University of Suwon)
  • 문지연 (수원대학교 신소재공학과) ;
  • 박문수 (수원대학교 신소재공학과)
  • Published : 2008.09.30

Abstract

Suspension polymerization was carried out to synthesize poly(butyl methacrylate) (PBMA) composite particles containing carbon black. Water was selected as a reaction medium, hydrophobic silica as a stabilizer and azobisisobutyronitrile as an initiator. Concentration of stabilizer was varied from 0.67 to 2.55 weight% with respect to the water, and that of initiator was varied from 0.25 to 3.00 weight% with respect to the butyl methacrylate (BMA) monomer. All polymerization reactions were conducted at 75$^{\circ}C$. It is found that stabilizer concentration has no impact on reaction kinetics, while an increase in initiator concentration enhances polymerization reaction rate. Increase of carbon black concentration from 1 to 3 to 5 wt% into PBMA displayed progressive decrease in reaction conversion. The particle diameter of PBMA composite particles containing carbon black was found to be between 5 and 30 ${\mu}m$. Glass transition was determined to range from 23.8 to 24.7$^{\circ}C$, irrespective of variation in the concentration of stabilizer, initiator or carbon black.

현탁중합법을 이용하여 카본블랙을 함유하는 폴리뷰틸메타크릴레이트 복합체 입자를 합성하였다. 물을 반응매체로 선택하고 소수성실리카를 안정제로 azobisisobutyronitrile (AIBN)을 개시제로 선택하였다. 안정제의 농도는 물에 대하여 0.67 중량%에서 2.55 중량%까지 변화시켰으며, 개시제는 단량체에 대하여 0.25 중량%에서 3.00 중량%까지 변화시키면서 반응역학에 미치는 영향을 조사하였다. 모든 반응은 75$^{\circ}C$에서 진행하였다. 안정제의 농도는 반응속도에 무관하였으나, 개시제의 증가는 반응속도를 증가시켰다. 카본블랙을 단량체에 대하여 1, 3 및 5 중량% 유입하는 경우 반응전환율은 단계적으로 감소하였다. 폴리뷰틸메타크릴레이트 복합체 입자의 입경은 5-30 ${\mu}m$로 관찰되었다. 유리전이온도는 카본블랙의 유입 및 개시제, 안정제의 농도에 무관하게 23.8-24.7$^{\circ}C$로 측정되었다.

Keywords

References

  1. I. Noda, T. Kamoto and M. Yamada, "Size-Controlling Synthesis of Narrowly Distributed Particles of Methylsilsesquioxane Derivatives", Chem. Mater., 12, 1708 (2000) https://doi.org/10.1021/cm000013b
  2. R. W. Simms and M. F. Cunningham, "Reverse Atom Transfer Radical Polymerization of Butyl Methacrylate in a Miniemulsion Stabilized with Cationic Sulfactant", J. Polym. Sci.: Part A: Polym. Chem., 44, 1628 (2006) https://doi.org/10.1002/pola.21270
  3. P. Bataille, M. Almassi, and M. Inoue, "Emulsifierfree Emulsion Polymerization of N-butyl Methacrylate", J. Appl. Polymer Sci., 67, 1711 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980307)67:10<1711::AID-APP4>3.0.CO;2-M
  4. J. L. Guillaume, C. Pichot, and J. Guillot, "Emulsifier- Free Emulsion Copolymerization of Styrene and Butyl Acrylate. I.* Kinetic Studies in the Absence of Sulfactant", J. Polym. Sci.: Polym. Chem., 28, 119 (1990) https://doi.org/10.1002/pola.1990.080280109
  5. Z. Xu, C. Yi, G. Lu, J. Zhang, and S. Cheng, "Styrene-Butyl Acrylate-N,N-Dimethyl N-Butyl NMethacrylamidino Propyl Ammonium Bromide Emulsifier-free Emulsion Copolymeization", Polym. Inter., 44, 149 (1997) https://doi.org/10.1002/(SICI)1097-0126(199710)44:2<149::AID-PI836>3.0.CO;2-U
  6. A. J. Paine, "Dispersion Polymerization of Styrene in Polar Solvents. IV. Solvency Control of Particle Size from Hydroxypropyl Cellulose Stabilized Polymerizations", J. Polym. Sci.: Part A: Polym. Chem, 28, 2485 (1990) https://doi.org/10.1002/pola.1990.080280921
  7. S. Shen, E. D. Sudol, and M. S. El-Aasser, "Control of Particle Size in Dispersion Polymerization of Methyl Methacrylate", J. Polym. Sci.: Part A: Polym. Chem, 31, 1393 (1993) https://doi.org/10.1002/pola.1993.080310606
  8. K. Takahashi, S. Miyamori, H. Uyama abd S. Kobayashi, "Preparation of Micron-Size Monodisperse Poly(2-hydroxyethyl methacrylate) Particles by Dispersion Polymerization", J. Polym. Sci.: Part A: Polym. Chem, 34, 175 (1996) https://doi.org/10.1002/(SICI)1099-0518(19960130)34:2<175::AID-POLA3>3.0.CO;2-T
  9. R. Olayo, E. Garcia, Garcia-Corichi, L. Sanchezvazquez and J. Alvarez, "Poly(vinyl alcohol) as a Stabilizer in the Suspension Polymerizaton of Styrene: The Effect of the Molecular Weight", J. Appl. Polym. Sci., 67, 71 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980103)67:1<71::AID-APP8>3.0.CO;2-L
  10. Y. Taguchi, K. Hosogai, and M. Tanaka, "Effect of Dry Powder Preparation Conditions on Polymer Particles in Suspension Polymerization", J. Nihon Chem. Eng., 25-5, 758 (1999)
  11. R. Murakami, H. Hachisako, K. Yamada, and Y. Motozato, "Preparation of Micron-Sized Poly(vinyl acetate) Particles by Suspension Polymerization Using Poly(vinyl alcohol) -Borate Complex Stabilizer", Polymer J., 25-2, 205 (1993) https://doi.org/10.1295/polymj.25.205
  12. S. S. Kim, T. S. Park, B. C. Shin, and Y. B. Kim, "Polymethyl methacrylate/montmorillonite nanocomposite beads through a suspension polymerization- derived process", J. Appl. Polym. Sci., 97, 2340 (2005) https://doi.org/10.1002/app.21696
  13. N. Sawatari, M. Fukuda, Y. Taguchi, and M. Tanaka, "The Effect of Surface Treatment of Magnetite Powder on a Structure of Composite Particles Prepared by Suspension Polymerization", J. Chem. Eng. Japan, 37-6, 731 (2004) https://doi.org/10.1252/jcej.37.731
  14. M. Tanaka, S. Iida, and K. Saito, "Effect of Magnetite Incorporation Technique in Preparing Polymer Composite Particles by Suspension Polymerization", J. Chem Eng. Japan, 22-6, 1384 (1996)
  15. M. Z. Yates, E. R. Birnbaum, and T. M. McCleskey, "Colored Polymer Microparticles through Carbon Dioxide-Assisted Dyeing", Langmuir, 16-11, 4757 (2000) https://doi.org/10.1021/la000049i
  16. E. Bourgeat-Lami and J. Lang, "Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media", J. Colloid Interface Sci., 210, 281 (1999) https://doi.org/10.1006/jcis.1998.5939
  17. D. Horak, F. Svec, and J. M. J. Frechet, "Preparation of Colored Poly(styrene-co-butyl methacrylate) Micrometer Size Beads with Narrow Size Distribution by Dispersion Polymerization in Presence of Dyes", J. Polym. Sci.: Part A: Polym. Chem, 33, 2961 (1995) https://doi.org/10.1002/pola.1995.080331714
  18. V. Castelvetro, C. D. Vita, G. Giannini, and S. Giaiacopi, "Role of Anionic and Nonionic Surfactants on the Control of Particle Size and Latex Colloidal Stability in the Seeded Emulsion Polymerization of Butyl Methacrylate", J. Appl. Polym. Sci., 102, 3083 (2006) https://doi.org/10.1002/app.23717
  19. X. Xu and F. Chen, "Modified Emulsifier-Free Emulsion Polymerization of Butyl Methacrylate with Ionic or/and Nonionic Comonomers", J. Appl. Polym. Sci., 92, 3080 (2004) https://doi.org/10.1002/app.20324
  20. D. Li and R. A. Hutchinson, "High Temperature Semibatch Free Radical Copolymerization of Butyl Methacrylate and Styrene", Macrolmol. Symp., 243, 24 (2006)
  21. R. Cuervo-Rodriguez, C. Fernandez-Monreal and E. L. Madruga, "Kinetic Study of the Stable Free-radical Copolymerization of Styrene with Butyl Methacrylate", J. Polym. Sci.: Part A: Polym. Chem, 40, 2750 (2002) https://doi.org/10.1002/pola.10368
  22. D. Horak, F. Svec, and J. M. J. Frechet, "Preparation and Contral of Sulface Properties of Monodisperse Micrometer Size Beads by Dispersion Copolymerization of styrene and Butyl Methacrylate in Polar Media", J. Polym. Sci.: Part A: Polym. Chem, 33, 2329 (1995) https://doi.org/10.1002/pola.1995.080331405
  23. Mitsubishi Chemical, "Mitsubishi Carbon Black"(2005)
  24. Nippon Aerosil Co., LtD., "Introduction of Aerosil Products" (2005)
  25. R. K. Iler, "The Chemistry of Silica", p. 60, John Wiley & Sons (1978)
  26. G. Odian, "Principles of Polymerization", 3rd ed., Wiley Interscience (1991)
  27. H. mark, N. Bikales, C. Overberger, and G. Menges, "Encyclopedia of polym. Sci. & Eng, 2nd ed., Vol. 15", p. 560 (1989)