DOI QR코드

DOI QR Code

Formation of Solidification and Eutectic Microstructures with Solidification Rates in the Single Crystal Superalloy CMSX 10

단결정 초내열합금에서 응고속도에 따른 응고 및 공정조직의 형성 거동

  • Lee, Je-Hyun (Department of Materials Science and Engineering, Changwon National University)
  • 이재현 (창원대학교 금속재료공학과)
  • Published : 2008.11.30

Abstract

Directional solidification experiments were carried out at $1-300\;{\mu}m/sec$ solidification rates in the single crystal superalloy, CMSX 10. The solid/liquid interface morphology changed from planar to dendritic, and the dendrite spacing became finer as the solidification rate increased. The pool size of the ${\gamma}/{\gamma}'$ eutectic, formed between dendrites, reduced as the solidification rate increased. The phase formation temperatures, such as the solidus, liquidus and eutectic, were estimated by differential scanning calorimetry (DSC) analysis. The morphology of the ${\gamma}/{\gamma}'$ phase, known to be eutectic, showed ${\gamma}'$ cells with a $\gamma$ intercellular network, and this ${\gamma}/{\gamma}'$ was composed of coarse and fine ${\gamma}/{\gamma}'$ regions. In this study, it is suggested that the ${\gamma}/{\gamma}'$ phase was a coupled peritectic.The solidification procedure of the ${\gamma}/{\gamma}'$ between dendrites is also discussed.

Keywords

References

  1. B. B. Seth, in Superalloys 2000 (Seven Springs, PA, September 2000), eds. T. M. Pollock et al. (TMS, Warrendale, PA, USA, 2000) p.3
  2. W. S. Walston, K. S. O'hara, E. W. Ross, T. M. Pollock and W. H. Murphy, in Superalloys 1996 (Seven Springs, PA, September 1996), eds. R.D. Kissinger et al. (TMS, Warrendale, PA, USA, 1996) p.27
  3. A. D. Cetel and D. N. Duhl, in Superalloys 1988 (Seven Springs, PA, September 1988), eds. D.N. Duhl et al. (TMS, Warrendale, PA, USA, 1988) p.235
  4. T. M. Pollock, W. H. Murphy and J. S. Tueta, in Superalloys 1992 (Seven Springs , PA, September 1992), eds. S.D. Antolovich et al. (TMS, Warrendale, PA, USA, 1992) p.125
  5. F. L. Versnyder and R. W. Guard, Trans. ASM, 52, 485 (1960)
  6. G. L. Erickson, J. Metals, 47(4), 36 (1995)
  7. S. M. Seo, I. S.Kim, J. H.Lee, C. Y.Jo, H. Miyahara, K. Ogi, in Superalloys 2008 (Seven Springs, PA, September 2008), eds. R. Reed et al. (TMS, Warrendale, PA, USA, 2008) p.277
  8. N. D'Souza and H. B. Dong, Scripta Mat., 56, 41 (2007) https://doi.org/10.1016/j.scriptamat.2006.08.060
  9. G. Brewster, H. B. Dong, N. B. Green, N. D'Souza, Met. Mat. Trans. B, 39B, 87 (2008) https://doi.org/10.1007/s11663-007-9118-2
  10. J. D. Verhoeven, J. H. Lee, F. C. Labbs, and L. L. Jones, J. Phase Equilibria., 22(1), 15 (1991)
  11. P. J. Haines, Thermal Methods of Analysis, p. 79, Blackie Academic and Professional, Glasgow UK, (1995)
  12. A. Kermanpur, N. Varahram, P. Davami, and M. Rappaz, Metall. Mater. Trans B, 31B, 1293 (2000) https://doi.org/10.1007/s11663-000-0017-z
  13. W. Kurz and D. J. Fisher, Fundamentals of Solidification, p.83, Trans Tech Publications, Swizerland, (1989)
  14. M. McLean, Directionally Solidification Material for High Temperature Service, p.33, The Metals Society, UK, (1983)
  15. M. A. Eshelman, V. Seetharaman and R. Trivedi, Acta Metall., 36, 1165 (1988) https://doi.org/10.1016/0001-6160(88)90169-1
  16. J. D. Verhoeven, Fundamentals of Physical Metallurgy, p.267, John Wiley & Sons, New York, (1975)
  17. J. H. Lee, J. D. Verhoeven, J. Crystal Growth, 144, 353 (1994) https://doi.org/10.1016/0022-0248(94)90477-4
  18. M. C. Fleming, Solidification Processing, p.177, Mc Grow-Hill, New York,(1974)
  19. W. J. Boettinger, Metall. Trans., 5, 2023 (1974) https://doi.org/10.1007/BF02644495