DOI QR코드

DOI QR Code

Synthesis and Characterization of CNT / TiO2 Photoelectrocatalytic Electrodes for Methlene Blue Degradation

  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2008.11.30

Abstract

In this study, two series of CNT/$TiO_2$ electrodes were prepared. The decrease of surface area compared with that of the pristine carbon nanotubes (CNTs) indicated the blocking of micropores on the surface of the CNTs; was further supported by scanning electron microscopy (SEM) and field emission SEM (FE-SEM) observations. The X-ray diffraction (XRD) results showed that the CNT/$TiO_2$ composites contained a mix of anatase and rutile forms of $TiO_2$ particles when the precursor was $TiO_2$ powder, whereas when the precursor was Ti ($OC_4H_7$) (TNB), the composites contained only the typical single and clear anatase $TiO_2$ particles. The energy dispersive X-ray spectroscopy (EDX) spectra showed the presence of C, O and Ti peaks for all samples. It was found that catalytic decomposition of methylene blue (MB) solution could be attributed to synthetic effects between the $TiO_2$ photocatalysis and electro-assisted CNTs network, and that photoelectrocatalytic oxidation increased with an increase of CNT composition. It was also found that the photoelectrocatalytic oxidation efficiency for MB is higher than that of photocatalytic oxidation. Moreover, the CNT/$TiO_2$ composites catalyst prepared by the impregnation method demonstrates higher photoelectrocatalytic activity than the mechanical mixture with the same CNT content.

Keywords

References

  1. P. Serp, M. Corrias and P. Kalck, Appl. Catal. A. Gen., 253, 337 (2003) https://doi.org/10.1016/S0926-860X(03)00549-0
  2. J. J. Ge, D. Zhang, Q. Li and H. Hou, J. Am. Chem. Soc., l27, 9984 (2005) https://doi.org/10.1021/ja050924s
  3. B. Fugetsu, S. Satoh, T. Shiba and T. Mizutani, Environ. Sci. Technol., 38, 6890 (2004) https://doi.org/10.1021/es049554i
  4. A. Masakazu, Bull. Chem. Soc. Jpn.,77, l427 (2004) https://doi.org/10.1246/bcsj.77.1427
  5. B. J. Liu, T. Torimoto, H. Matsumoto and H. Yoneyama, J. Photochem. Photobiol. A.,108, 187 (1997) https://doi.org/10.1016/S1010-6030(97)00082-8
  6. R. H. Michael, T. M. Scot, W. Y. Choi and W. B. Detlef, Chem. Rev., 95, 69 (1995) https://doi.org/10.1021/cr00033a004
  7. A. P. Mandelbaum, A. E. Regazzoni, M. A. Blesa and S. A. Bilmes, J. Phys. Chem. B., 103(26), 5505 (1999) https://doi.org/10.1021/jp984812h
  8. S. Yamazaki, S. Tanaka and H. Tsukamoto, J. Photochem. Photobiol. A., 121, 55 (1999) https://doi.org/10.1016/S1010-6030(98)00448-1
  9. K. Katagiri, T. Suzuki, H. Muto, M. Sakai and A. Matsuda, Colloids and Surfaces A: Physicochem. Eng. Aspects., 321, 233 (2008) https://doi.org/10.1016/j.colsurfa.2007.11.028
  10. Z. P. Zhu, K. L. Huang and Y. Zhou, Trans. Nonferrous. Met. Soc. China., 17, 1117 (2007)
  11. M. L. Chen, J. S. Bae, W. C. Oh, Carbon Science, 7, 259 (2006)
  12. M. L. Chen, J. S. Bae and W. C. Oh, Bull. Chem. Soc. Kor., 27, 1423 (2006) https://doi.org/10.5012/bkcs.2006.27.9.1423
  13. M. L. Chen, J. S. Bae and W. C. Oh, Anal. Sci. Technol., 19, 376 (2006)
  14. M. L. Chen, Y. S. Ko, W. C. Oh, Carbon Science., 8(1), 6 (2007)
  15. W. C. Oh, A. R. Jung and W. B.Ko, J. Ind. Eng. Chem.,13(7), 1208 (2007)
  16. W. C. Oh, M. L. Chen, Bull. Korean. Chem. Soc., 29(1), 159 (2008) https://doi.org/10.5012/bkcs.2008.29.1.159
  17. W. D. Wang, P. Serp, P. Kalck and J. L .Faria, Appl. Catal. B. Environ., 56, 305 (2005) https://doi.org/10.1016/j.apcatb.2004.09.018
  18. K. Hernadi, E. Ljubovic, J. W. Seo and L. Forro, Acta. Mater., 51, 1447 (2003) https://doi.org/10.1016/S1359-6454(02)00539-6
  19. A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin and S. Bonnamy, Carbon., 42, 1147 (2004) https://doi.org/10.1016/j.carbon.2003.12.041
  20. S. W. Phang, M. Tadokoro, J .Watanabe, N. Kuramoto, Synthetic. Metals.,158, 251 (2008) https://doi.org/10.1016/j.synthmet.2008.01.012
  21. A. K. Ray, Chem. Engi. Sci., 54, 3113 (1999) https://doi.org/10.1016/S0009-2509(98)00507-7
  22. P. F. Fu, Y. Luan and X. G. Dai, J. Mol. Catal. A. Chem., 221, 81 (2004) https://doi.org/10.1016/j.molcata.2004.06.018
  23. Z. Ding, X. J. Hu, P. L .Yue, G. Q. Lu and P. F. Greenfield, Catal. Today.,68, 173 (2001) https://doi.org/10.1016/S0920-5861(01)00298-X
  24. X. Z. Li, H. L. Liu and P. T .Yue, Environ. Sci. Technol., 34, 4401 (2000) https://doi.org/10.1021/es000939k
  25. F.Y. Oliva, L. B. Avalle, E. Santos and O. R. C´amara, J. Photochem. Photobiol. A. Chem., 146, 175 (2002) https://doi.org/10.1016/S1010-6030(01)00614-1
  26. G. Colon, M. C. Hidalgo and J. A. Navio, Appl. Catal. B. Environ., 45, 39 (2003) https://doi.org/10.1016/S0926-3373(03)00125-5
  27. W. D. Wang, P. Serp, P. Kalck, C. G. Silva and J. L .Faria, Mater. Res. Bull., 43, 958 (2008) https://doi.org/10.1016/j.materresbull.2007.04.032
  28. W. D. Wang, P. Serp, P. Kalck and J. L. Faria, J. Mol. Catal. A. Chem., 235, 194 (2005) https://doi.org/10.1016/j.molcata.2005.02.027
  29. M. L. Chen, J. S. Bae, W. C. Oh and Carbon Science., 7, 259 (2006)
  30. W. C. Oh, M. L. Chen, J. Ceram .Process. Res., 9(2), 100 (2008)
  31. P. A. Christensen, T. P. Curtis, T. A. Egerton, S. A. M. Kosa and J. R. Tinlin, Appl. Catal. B. Environ., 41, 371 (2003) https://doi.org/10.1016/S0926-3373(02)00172-8
  32. X. Z. Li, F. B. Li, C. M. Fan and Y. P. Sun, Water. Res., 36, 2215 (2002) https://doi.org/10.1016/S0043-1354(01)00440-7
  33. D. Jiang, H. Zhao and S. Zhang, R. John, J. Catal., 223, 212 (2004) https://doi.org/10.1016/j.jcat.2004.01.030
  34. J. Chen, M. Liu, L .Zhang, J. Zhang and L. Jin, Water. Res., 37, 3815 (2003) https://doi.org/10.1016/S0043-1354(03)00332-4
  35. W. C. Oh, A. R. Jung and W. B. Ko, J. Ind. Eng. Chem., 13(7), 1208 (2007)
  36. M. J. O'connell, Carbon Nanotubes Properties and Applications, CRC press, USA, 2006
  37. B. Gao, C. Peng, G. Z. Chen, G. L. Puma, Appl. Catal. B. Environ., 2008, doi:10.1016/j.apcatb.2008.06.027

Cited by

  1. electrodes vol.20, pp.1, 2010, https://doi.org/10.6111/JKCGCT.2010.20.1.035
  2. Highly Effective Disinfection of E. coli Using the Nanohybrids Ti1−xNixO2/CNTs pp.1543-186X, 2019, https://doi.org/10.1007/s11664-019-06966-5