DOI QR코드

DOI QR Code

Computation of Spring Constants of MEMS Socket Pins by Theoretical Analysis

이론분석에 의한 MEMS 소켓 핀의 스프링 상수 계산

  • Bae, Kyoo-Sik (Department of Electronic Materials Engineering, The University of Suwon) ;
  • Ho, Kwang-Il (Department of Mechanical Engineering, The University of Suwon)
  • 배규식 (수원대학교 전자재료공학과) ;
  • 호광일 (수원대학교 기계공학과)
  • Published : 2008.11.30

Abstract

Spring constants (displacement per unit applied load) of MEMS socket pins of given structures were computed by theoretical analysis and confirmed by the finite element method (FEM). In the theoretical analysis, the displacement of pins was calculated based on the 2-dimensional bending theory of the curved beam. For the 3-dimensional modeling, CATIA was used. After modeling, the raw data were transferred to ANSYS, which was employed in the 3-dimensional analysis for the calculation of the stress and strain and loaddisplacement The theoretical analysis and the FEM results were found to agree, with each showing the spring constants as 63.4 N/m within a reasonable load range. These results show that spring constants can be easily obtained through theoretical calculation without resorting to experiments and FEM analysis for simple and symmetric structures. For the some change of shape and structural stiffness, this theoretical analysis can be applied to MEMS socket pins.

Keywords

References

  1. K. K. Lee, E. G. Choi, Y. H. Chu, J. S. Kim, B. S. Lee and H K. Ahn, Kor. J. Mater. Res., 18(1), 38-44 (2008) https://doi.org/10.3740/MRSK.2008.18.1.038
  2. M. K. Chen and C.C. Tai, The 4th Int'l Symp. on Electronic Materials and Packaging, IEEE, 4-6 Dec,123 (2002)
  3. N. Langston, N Langston Jr, and H. Yao, Advanced Packaging, 13(3), 1 (2004)
  4. S. Chowdhury, M. Ahmadi, G. A. Jullien, and W. C. Miller, Circuit and Systems, 2002, ISCAS'02, Proceedings of the 2002 Int'l Symp., Vol. 1, 657 (2002)
  5. T. Itoh, K. Kataoka, and T. Suga, Sensors and Actuators A, 97, 462 (2002) https://doi.org/10.1016/S0924-4247(01)00822-6
  6. Y. M. Kim, I. S. Yu and J. H. Lee, KIEE Int'l Trans. on EA, 4-C(4), 149-154 (2004)
  7. S. S. Park, J. KIEE, 24(10), p.45-54 (1997)
  8. J. Hormes, J. Gottert, K. Lian, Y. Desta, and L. Jian, Nucl. Instru. Methods Phys. Res. Sect. B, 199, 332 (2003) https://doi.org/10.1016/S0168-583X(02)01571-9
  9. M. Baghbanan, U. Erb, and G. Palumbo, Phys. Stat. Sol.(a), 203(6), 1259 (2006) https://doi.org/10.1002/pssa.200566155
  10. T. H. Yim, S. C. Yoon and H. S. Kim, Mat. Sci. & Engr A, 449, 836-840 (2007) https://doi.org/10.1016/j.msea.2006.02.406
  11. H.S. Cho, K.J. Hemker, K. Lian, J. Goettert, and G. Dirras, Sensors and Actuators A, 103, 59 (2003) https://doi.org/10.1016/S0924-4247(02)00314-X
  12. M. H. Seo, H. S. Hong and W.-S. Jung, J. Mater. Res., 18(3), 117 (2008)
  13. W. Bedyk, M. Niessner, G. Schrag, G. Wachutka, B. Margesin and A. Faes, Sensors and Actuators A, 145, 263 (2008) https://doi.org/10.1016/j.sna.2008.01.009
  14. R. Malucci, IEEE-CHMT, 34(3), 399 (2001)
  15. J. Wu and M. G. Pecht, 2004 Int'l IEEE Conf. on Asian Green Electronics, p.127-135 (2005)
  16. Dassault Systemes, CATIA Version 5.17, (2006)
  17. ANSYS, Inc., ANSYS(R) Release 11.0, (2005)