DOI QR코드

DOI QR Code

Additivity Factors Analysis of Compositions in Li2O-TeO2-ZnO Glass System Determined from Mixture Design

혼합물설계법에 의한 Li2O-TeO2-ZnO 유리의 물성에 대한 조성의 가성성인자 분석

  • Jung, Young-Joon (Division of Materials Science and Engineering, Pusan National University) ;
  • Lee, Kyu-Ho (Division of Materials Science and Engineering, Pusan National University) ;
  • Kim, Tae-Ho (Division of Materials Science and Engineering, Pusan National University) ;
  • Kim, Young-Seok (Division of Materials Science and Engineering, Pusan National University) ;
  • Na, Young-Hoon (Division of Materials Science and Engineering, Pusan National University) ;
  • Ryu, Bong-Ki (Division of Materials Science and Engineering, Pusan National University)
  • Published : 2008.11.30

Abstract

In this study, the additivity factors of compositions to density and glass transition point ($T_g$) in a $xLi_2O-(1-x)[(1-y)TeO_2-yZnO]$ (0$T_g$ was discussed. As a method for predicting the relation between glass structure and ionic conductivity, density was measured by the Archimedes method. The glass transition point was analyzed to predict the relation between ionic conductivity and the bonding energy between alkali ions and non-bridge oxygen (NBO). The relation equations showing the additivity factor of each composition to the two properties are as follows: Density(g/$cm^3$) = $2.441x_1\;+\;5.559x_2\;+\;4.863x_3\;T_g(^{\circ}C)$ = $319x_1\;+\;247x_2\;+\;609x_3\;-\;1950x_1x_3$ ($x_1$ : fraction of $Li_2O$, $x_2$ : fraction of $TeO_2$, $x_3$ : fraction of ZnO) The density decreased as $Li_2O$ content increased. This was attributed to change of the $TeO_2$ structure. From this structural result, the electric conductivity of the glass samples was predicted following the ionic conduction mechanism. Finally, it is expected that electric conductivity will increase as the activation energy for ion movement decreases.

Keywords

References

  1. K. Tanaka, T. Yoko, H. Yamada and K. Kamiya, J. Non-Cryst. Solids, 103, 250-256 (1988) https://doi.org/10.1016/0022-3093(88)90203-7
  2. V. Kozhukraov, H. Burger, S. Neov, and B. Sizhimov, Polyhedron, 5, 771.-777 (1986) https://doi.org/10.1016/S0277-5387(00)84436-8
  3. J. C. Champarnaud-Mesjard, S. Blanchandin, P. Thomas, A. Mirgorodsky, T. Merle-Mejean and B. Frit, J. Phys. Chem. Solids, 61, 1499-1507 (2000) https://doi.org/10.1016/S0022-3697(00)00012-3
  4. P. A. Thomas, J. Phys. C:Solid State Phys., 21, 4611 (1988) https://doi.org/10.1088/0022-3719/21/25/009
  5. O. Noguera, T. Merle-Mejean, A. P. Mirgorodsky, M. B. Smirnov, P. Thomas and J.C. Champarnaud-Mesjard, J. Non-Cryst. Solids, 330, 50 (2003) https://doi.org/10.1016/j.jnoncrysol.2003.08.052
  6. M. M. El-Desoky, J. Non-Cryst. Solids, 351, 3139 (2005) https://doi.org/10.1016/j.jnoncrysol.2005.08.004
  7. M.M. El-Desoky, J. Mater. Sci.: Mater. Electron., 14, 215 (2003) https://doi.org/10.1023/A:1022981929472
  8. K. Sega, Y. Kuroda and H. Sakta, J. Mater. Sci., 33, 1303 (1998) https://doi.org/10.1023/A:1004302431797
  9. M. H. Bhat, M. Kandavel, M. Ganguli and K. J. Rao, Bull. Mater. Sci., 27(2), 189 (2004) https://doi.org/10.1007/BF02708504
  10. L. Anderson and D. A. Stuart, J. Am. Ceram. Soc., 37, 573 (1954) https://doi.org/10.1111/j.1151-2916.1954.tb13991.x
  11. N.H. Ray, J. Non-Cryst. Solids., 15, 423 (1974) https://doi.org/10.1016/0022-3093(74)90148-3
  12. A. Santafe-Moros, J. M. Gozalvez-Zafrilla, J. Lora-Garcia and J. C. Garcia-Díaz, Desalination, 185, 289 (2005) https://doi.org/10.1016/j.desal.2005.02.081
  13. M. Tatsumisago, S. Kato, T. Minami and Y. Kowada, J. Non-Cryst. Solids., 192&193, 478 (1995) https://doi.org/10.1016/0022-3093(95)00393-2
  14. E. T. Kang, M. J. Kim and J. D. Kim, J. Kor. Ceram. Soc., 44(4), 219 (2007) https://doi.org/10.4191/KCERS.2007.44.4.219
  15. A. Dietael and Z. Elektochem, Angew Physik Chem., 48, 9 (1942)
  16. T. Sekiya, N. Mochida and A. Soejima, J. Non-cryst. Solids, 191(1-2), 115 (1995) https://doi.org/10.1016/0022-3093(95)00290-1