ON THE MINIMUM LENGTH OF SOME LINEAR CODES OF DIMENSION 6

EUN JU CHEON AND TAKAO KATO

ABSTRACT. For $q^5-q^3-q^2-q+1\leq d\leq q^5-q^3-q^2$, we prove the non-existence of a $[g_q(6,d),6,d]_q$ code and we give a $[g_q(6,d)+1,6,d]_q$ code by constructing appropriate 0-cycle in the projective space, where $g_q(k,d)=\sum_{i=0}^{k-1}\lceil\frac{d}{q^i}\rceil$. Consequently, we have the minimum length $n_q(6,d)=g_q(6,d)+1$ for $q^5-q^3-q^2-q+1\leq d\leq q^5-q^3-q^2$ and $q\geq 3$.

1. Introduction and preliminaries

One of the interesting problems in coding theory is to determine the value $n_q(k,d)$ which denotes the smallest number n such that an $[n,k,d]_q$ code exists for given k, d and q. We shall deal with this problem for k=6.

An $[n, k, d]_q$ code is a k-dimensional linear subspace of \mathbb{F}_q^n of minimum distance d over the finite field \mathbb{F}_q of order q. The Griesmer bound provides an important lower bound on the length n for an $[n, k, d]_q$ code,

$$n \ge g_q(k,d) := \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil,$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x. In this paper, we shall prove the following theorems:

Theorem A. For $q \ge 3$, a $[g_q(6,d), 6, d]_q$ code does not exist for $q^5 - q^3 - q^2 - q + 1 \le d \le q^5 - q^3 - q^2$, which means that $n_q(6,d) \ge g_q(6,d) + 1$.

Theorem B. There exists a $[g_q(6,d) + 1, 6, d]_q$ for $q^5 - q^3 - q^2 - q + 1 \le d \le q^5 - q^3 - q^2$.

Received March 10, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 94B65, 94B05, 51E20, 05B25.

 $Key\ words\ and\ phrases.$ Griesmer bound, linear code, 0-cycle, minimum length, projective space.

The first named author was supported by the Korea Research Foundation Grant. (KRF-2004-037-C00004).

The second named author was supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science #17540160.

From the above results, for small q = 3, 4, 5, we have

$$n_3(6, d) = g_3(6, d) + 1$$
 for $d = 205, 206, 207,$
 $n_4(6, d) = g_4(6, d) + 1$ for $d = 941, 942, 943, 944,$
 $n_5(6, d) = g_5(6, d) + 1$ for $d = 2971, 2972, 2973, 2974, 2975.$

When q = 3, it was already determined and we could find it in [5].

In [3], R. Hill constructed a large class of codes which meet the Griesmer bound and obtained the following theorem:

Theorem 1 ([3]). Let $d = sq^{k-1} - \sum_{i=1}^{p} q^{u_i-1}$ such that $k > u_1 \ge u_2 \ge \cdots \ge u_p$ with $u_i > u_{i+q-1}$ for $1 \le i \le p-q+1$, where $s = \lceil \frac{d}{q^{k-1}} \rceil$. If $\sum_{i=1}^{\min\{s+1,p\}} u_i \le sk$, then $n_q(k,d) = g_q(k,d)$.

For $k \leq 5$, there are many results for $q \leq 5$ (see [5]). In this paper, we shall treat the problem to find the exact value of $n_q(6,d)$. By Theorem 1, we have $n_q(6,d) = g_q(6,d)$ for $q^5 - q^3 - q^2 + 1 \leq d \leq q^5$ and $q^5 - q^4 - q + 1 \leq d \leq q^5 - q^4$ for any q. For k=6, the results obtained by Hamada-Helleseth [2] and Maruta [5] are restricted to the ternary code. Our results is to determine the exact value of $n_q(6,d)$ in the range $q^5 - q^3 - q^2 - q + 1 \leq d \leq q^5 - q^3 - q^2$ for an arbitrary $q \geq 3$ by using a finite projective geometry.

Let \mathbb{P}^{k-1} be the (k-1)-dimensional projective space over \mathbb{F}_q . As a notational convention, in this paper, P, P_i, Q, R , (resp. $l, l_i, \delta, \delta_i, \Delta, \Delta_i, \Pi, \Pi_i$) etc. stand for points (resp. lines, planes, solids, 4-flats) in \mathbb{P}^{k-1} . We denote by \mathcal{F}_j the set of all j-flats in \mathbb{P}^{k-1} and θ_j the number of all points in \mathbb{P}^j , i.e., $\theta_j = q^j + \cdots + q + 1$.

Let C be an $[n,k,d]_q$ code with a generator matrix G. C is said to be non-degenerate if every column of G is nonzero. Thus if C is a non-degenerate code, each column of G can be regarded as a point in \mathbb{P}^{k-1} . The formal sum of columns of G as points in \mathbb{P}^{k-1} is called a 0-cycle of the code C, denoted by \mathcal{X} . Denoting $m(P) \geq 0$ the number of times the point P occurring as a column of G, we have $\mathcal{X} = \sum_{P \in \mathbb{P}^{k-1}} m(P)P$. Then we have the parameters of C in terms of the coefficients in the 0-cycle \mathcal{X} as follows:

$$\begin{split} n &= \deg \mathcal{X} := \sum_{P \in \mathbb{P}^{k-1}} m(P), \\ d &= n - \max \big\{ \sum_{P \in H} m(P) \mid H \in \mathcal{F}_{k-2} \big\}. \end{split}$$

For a 0-cycle $\mathcal{Z} = \sum_{P \in \mathbb{P}^{k-1}} m(P)P$, and a subset $S \subset \mathbb{P}^{k-1}$, we denote the restriction \mathcal{Z} to S by $\mathcal{Z}(S) = \sum_{P \in S} m(P)P$. For simplicity's sake, we denote the 0-cycle $[S] := \sum_{P \in S} P$ which can be identified with the set S.

the 0-cycle $[S]:=\sum_{P\in S}P$ which can be identified with the set S. For a 0-cycle $\mathcal{X}_C=\sum_{P\in \mathbb{P}^{k-1}}m(P)P$ corresponding to a given code C, let $\gamma_0=\max\{m(P)\mid P\in \mathbb{P}^{k-1}\}$. C is said to be projective provided that $\gamma_0=1$. In this paper, we only concern the projective code. Let $\mathcal{Y}_C=[\mathbb{P}^{k-1}]-\mathcal{X}_C=$ $\sum_{P\in\mathbb{P}^{k-1}}(1-m(P))P$, which is called the complement of \mathcal{X}_C . We use the following notations:

$$c(S) := \deg \mathcal{X}_C(S)$$
 and $c_0(S) := \deg \mathcal{Y}_C(S)$.

We need the following theorems to prove our main results:

Theorem 2 ([4]). Let C be a $[g_q(k,d),k,d]_q$ code. Then we have

$$\gamma_j = \sum_{i=0}^j \left\lceil \frac{d}{q^{k-1-i}} \right\rceil \quad for \quad 0 \le j \le k-1,$$

where $\gamma_i := \max\{c(L)|L \in \mathcal{F}_i\}$ for $1 \le j \le k-1$.

Theorem 3 ([4]). Let C be a $[g_q(k,d),k,d]_q$ code. Then there exist j-dimensional subspaces L_j in \mathbb{P}^{k-1} with $c(L_j) = \gamma_j$ for $j = 0,1,\ldots,k-2$ such that $L_0 \subset L_1 \subset \cdots \subset L_{k-2}$ and that L_j gives a $[\gamma_j, j+1, \gamma_j - \gamma_{j-1}]_q$ code which attains the Giesmer bound for $1 \leq j \leq k-2$.

To know the structure of minihypers is important to prove our results. A subset F with f points in \mathbb{P}^t is called an $\{f,m;t,q\}$ -minihyper if $\#(F\cap H)\geq m$ for any hyperplane H in \mathbb{P}^t and $\#(F\cap H)=m$ for some hyperplane H in \mathbb{P}^t , where $m\geq 0$.

Theorem 4 ([1]). (1) Let F be a $\{\theta_{\alpha}, \theta_{\alpha-1}; t, q\}$ -minihyper with $t \geq 2$. Then F is an α -flat in \mathbb{P}^t .

(2) Let F be a $\{\theta_2 + \theta_1, \theta_1 + \theta_0; t, q\}$ -minihyper with $t \geq 4$. Then F consists of a plane and a line which are disjoint.

2. Proofs of Theorems A and B

A proof of Theorem A. Since the existence of an $[n,k,d]_q$ code with $d \geq 2$ implies the existence of an $[n-1,k,d-1]_q$ code, it is sufficient to show that there does not exist a $[q^5+q^4-q^2-2q,6,q^5-q^3-q^2-q+1]_q$ code for $q \geq 3$. Assume that there exists a $[q^5+q^4-q^2-2q,6,q^5-q^3-q^2-q+1]_q$ code

Assume that there exists a $[q^5 + q^4 - q^2 - 2q, 6, q^5 - q^3 - q^2 - q + 1]_q$ code C. Then by Theorem 2, we have

$$\gamma_0 = 1$$
, $\gamma_1 = q + 1$, $\gamma_2 = q^2 + q$, $\gamma_3 = q^3 + q^2 - 1$, and $\gamma_4 = q^4 + q^3 - q - 1$.

Since $\gamma_0 = 1$, C is a projective code. Let C_0 be the set of complement of 0-cycle of C in \mathbb{P}^5 . For a set $S \subset \mathbb{P}^5$, we note $c_0(S) = \#(S \cap C_0)$. Then, we have

$$c_0(l) \geq 0$$
 for any line $l \subset \mathbb{P}^5$,
 $c_0(\delta) \geq 1$ for any plane $\delta \subset \mathbb{P}^5$,
 $c_0(\Delta) \geq q+2$ for any solid $\Delta \subset \mathbb{P}^5$,
 $c_0(\Pi) \geq q^2+2q+2$ for any 4-flat $\Pi \subset \mathbb{P}^5$ and
 $c_0 = c_0(\mathbb{P}^5) = q^3+2q^2+3q+1$.

Let Π_0 be a 4-flat with $c_0(\Pi_0) = q^2 + 2q + 2 = \theta_2 + \theta_1$. Then $\Pi_0 \cap C_0$ consists of a plane δ_0 and a line l_0 with $\delta_0 \cap l_0 = \emptyset$ by Theorem 4(2). Thus we have

(1)
$$c_0(\Delta) = q + 2, 2q + 2 \text{ or } q^2 + q + 2$$

for any solid Δ contained in Π_0 . For an arbitrary 4-flat Π , we have $c_0(\Pi_0 \cap \Pi) \leq q^2 + q + 2$. Letting $\Delta_0 = \Pi_0 \cap \Pi$, we have

$$q^{3} + 2q^{2} + 3q + 1 = {}^{\#}C_{0} = c_{0}(\Pi) + c_{0}(\Pi_{0}) - qc_{0}(\Delta_{0}) + \sum_{\Pi' \supset \Delta_{0}, \Pi' \neq \Pi_{0}, \Pi} c_{0}(\Pi')$$
$$\geq c_{0}(\Pi) + q(q^{2} + 2q + 2) - q(q^{2} + q + 2),$$

whence $c_0(\Pi) \le q^3 + q^2 + 3q + 1$.

Next, we shall prove that there does not exist 4-flat Π with $2q^2 + 3q + 2 \le c_0(\Pi) \le q^3 + q^2 + 3q + 1$ in the following two claims:

Claim 1. There exists no 4-flat Π with $2q^2 + 3q + 2 \le c_0(\Pi) \le q^3 + q^2 + 2q + 1$.

Let Π_1 be a 4-flat with $c_0(\Pi_1) = q^3 + q^2 + 2q + 1 - eq - f$ for some integers $0 \le e \le q^2 - q - 2$, $0 \le f \le q - 1$. For any solid $\Delta \subset \Pi_1$, we have

$$q^{3} + 2q^{2} + 3q + 1 = {^{\#}C_{0}} = c_{0}(\Pi_{1}) + \sum_{\Pi \supset \Delta, \Pi \neq \Pi_{1}} c_{0}(\Pi) - qc_{0}(\Delta)$$
$$\geq q^{3} + q^{2} + 2q + 1 - eq - f + q(q^{2} + 2q + 2) - qc_{0}(\Delta).$$

Hence, $c_0(\Delta) \ge q^2 + q + 1 - e$.

Assume there exists a solid $\Delta_1 \subset \Pi_1$ with $c_0(\Delta_1) = q^2 + q + 1 - e$. If there were 4-flat $\Pi \supset \Delta_1$ with $c_0(\Pi) = q^2 + 2q + 2$, then by (1), $c_0(\Delta_1) = c_0(\Pi \cap \Pi_1) = q^2 + q + 2$, 2q + 2 or q + 2 which would not be equal to $q^2 + q + 1 - e$. Thus, $c_0(\Pi) \ge q^2 + 2q + 3$ for any 4-flat $\Pi \supset \Delta_1$. Hence, we have

$$q^{3} + 2q^{2} + 3q + 1 = {^{\#}C_{0}} = c_{0}(\Pi_{1}) + \sum_{\Pi \supset \Delta_{1}, \Pi \neq \Pi_{1}} c_{0}(\Pi) - qc_{0}(\Delta_{1})$$

$$\geq q^{3} + q^{2} + 2q + 1 - eq - f + q(q^{2} + 2q + 3)$$

$$- q(q^{2} + q + 1 - e)$$

$$= q^{3} + 2q^{2} + 4q + 1 - f,$$

which is a contradiction. Therefore, $c_0(\Delta) \geq q^2 + q + 2 - e$ for any solid $\Delta \subset \Pi_1$. Since $c_0(\Pi_1) = q^3 + q^2 + 2q + 1 - eq - f$ and $c_0(\Delta) \geq q^2 + q + 2 - e$ for any solid $\Delta \subset \Pi_1$, Π_1 gives a $[q^4 - q + eq + f, 5, d']_q$ code with $d' \geq q^4 - q^3 + (e - 1)(q - 1) + f$.

By the Griesmer bound, we have

$$q^{4} - q + eq + f \ge d' + \left\lceil \frac{d'}{q} \right\rceil + \left\lceil \frac{d'}{q^{2}} \right\rceil + \left\lceil \frac{d'}{q^{3}} \right\rceil + \left\lceil \frac{d'}{q^{4}} \right\rceil$$

$$\ge q^{4} + (e - 1)q + f + \left\lceil \frac{f - e + 1}{q} \right\rceil + \left\lceil \frac{(e - 1)(q - 1) + f}{q^{2}} \right\rceil$$

$$+ \left\lceil \frac{(e - 1)(q - 1) + f}{q^{3}} \right\rceil + \left\lceil \frac{(e - 1)(q - 1) + f}{q^{4}} \right\rceil.$$

Hence, f = 0 and e = 1, i.e., $c_0(\Pi_1) = q^3 + q^2 + q + 1 = \theta_3$ and $c_0(\Delta) \ge \theta_2$ for any solid $\Delta \subset \Pi_1$. By Theorem 4(1), we have $\Pi_1 \cap C_0 = \Delta_0$ for some solid Δ_0 in Π_1 . Therefore, $c_0(\Delta) = \theta_2$ or θ_3 for any solid $\Delta \subset \Pi_1$. On the other hand, $c_0(\Pi_0 \cap \Pi_1) = q^2 + q + 2$ for a given 4-flat Π_0 with $c_0(\Pi_0) = q^2 + 2q + 2$. This is a contradiction.

Claim 2. There exists no 4-flat Π with $q^3 + q^2 + 2q + 2 \le c_0(\Pi) \le q^3 + q^2 + 3q + 1$.

Let Π_1 be a 4-flat with $c_0(\Pi_1) = q^3 + q^2 + 3q + 1 - f$ for some integer $0 \le f \le q - 1$. For any solid $\Delta \subset \Pi_1$, we have

$$q^{3} + 2q^{2} + 3q + 1 = {^{\#}C_{0}} = c_{0}(\Pi_{1}) + \sum_{\Pi \supset \Delta, \Pi \neq \Pi_{1}} c_{0}(\Pi) - qc_{0}(\Delta)$$
$$\geq q^{3} + q^{2} + 3q + 1 - f + q(q^{2} + 2q + 2) - qc_{0}(\Delta).$$

Hence, $c_0(\Delta) \geq q^2 + q + 2$. Let $\Delta_1 = \Pi_0 \cap \Pi_1$ for a given 4-flat Π_0 with $c_0(\Pi_0) = q^2 + 2q + 2$. Since $c_0(\Delta_1) = q^2 + q + 2$, Π_1 gives a $[q^4 - 2q + f, 5, q^4 - q^3 - 2q + f + 1]_q$ code which attains the Griesmer bound. By Theorem 2, we have $c_0(l) \geq 1$, $c_0(\delta) \geq \theta_1$ and $c_0(\Delta) \geq \theta_2 + 1$ for any line l, plane δ and solid Δ in Π_1 . Since $\Pi_0 \cap C_0 = \delta_0 \cup l_0$ and $\delta_0 \cap l_0 = \emptyset$, we have $\delta_0 \subset \Delta_1 \cap C_0$. Then, we have

$$q^{3} + q^{2} + 3q + 1 - f = c_{0}(\Pi_{1}) = c_{0}(\Delta_{1}) + \sum_{\Pi_{1} \supset \Delta \supset \delta_{0}, \Delta \neq \Delta_{1}} c_{0}(\Delta) - qc_{0}(\delta_{0})$$
$$= q^{2} + q + 2 + \sum_{\Pi_{1} \supset \Delta \supset \delta_{0}, \Delta \neq \Delta_{1}} c_{0}(\Delta) - q(q^{2} + q + 1).$$

Therefore, $\sum_{\Pi_1 \supset \Delta \supset \delta_0, \Delta \neq \Delta_1} c_0(\Delta) = 2q^3 + q^2 + 3q - 1 - f \ge 2q^3 + q^2 + 2q$, whence there exists a solid $\Delta_0 \subset \Pi_1$ containing δ_0 with $c_0(\Delta_0) \ge 2q^2 + q + 2$. Since $c_0(l) \ge 1$ for every line $l \subset \Pi_1$, the fact that $c_0(\Pi_1 \setminus \Delta_0) \le q^3 - q^2 + 2q - 1 - f < q^3$ implies that $\Delta_0 \subset C_0$, i.e., $c_0(\Delta_0) = q^3 + q^2 + q + 1$. Then, we have

$$q^{3} + 2q^{2} + 3q + 1 = {}^{\#}C_{0} = c_{0}(\Pi_{1}) + \sum_{\Pi \supset \Delta_{0}, \Pi \neq \Pi_{1}} c_{0}(\Pi) - qc_{0}(\Delta_{0})$$

$$\geq q^{3} + q^{2} + 3q + 1 - f + \sum_{\Pi \supset \Delta_{0}, \Pi \neq \Pi_{1}} c_{0}(\Pi)$$

$$-q(q^{3} + q^{2} + q + 1).$$

Hence,

$$\sum_{\Pi \supset \Delta_0, \Pi \neq \Pi_1} c_0(\Pi) = q(q^3 + q^2 + 2q + 1) + f < q(q^3 + q^2 + 2q + 2),$$

whence there exists a 4-flat Π with $q^3 + q^2 + q + 1 \le c_0(\Pi) \le q^3 + q^2 + 2q + 1$. This contradicts Claim 1. Thus, we have Claim 2.

Let Δ_0 be a solid contained in Π_0 with $c_0(\Delta_0) = q^2 + q + 2$. Then, we have

$$q^{3} + 2q^{2} + 3q + 1 = c_{0}(\Pi_{0}) + \sum_{\Pi \supset \Delta_{0}, \Pi \neq \Pi_{0}} c_{0}(\Pi) - qc_{0}(\Delta_{0})$$
$$= (q^{2} + 2q + 2) + \sum_{\Pi \supset \Delta_{0}, \Pi \neq \Pi_{0}} c_{0}(\Pi) - q(q^{2} + q + 2),$$

whence $\sum_{\Pi\supset\Delta_0,\Pi\neq\Pi_0}c_0(\Pi)=2q^3+2q^2+3q-1$. Thus, there exists a 4-flat Π_1 containing Δ_0 with $c_0(\Pi_1)\geq 2q^2+2q+3$. By Claims 1 and 2, we have $c_0(\Pi_1)\leq 2q^2+3q+1$. Note that $\Delta_0\cap C_0=\delta_0\cup\{P_0\}$ for a point $P_0\in l_0$. For a line $l_1\subset\delta_0$, there exists a solid $\Delta'\subset\Pi_0$ with $c_0(\Delta')=q+2$ which contains l_1 and l_2 . Then, we have

$$q^{3} + 2q^{2} + 3q + 1 = c_{0}(\Pi_{0}) + \sum_{\Pi \supset \Delta', \Pi \neq \Pi_{0}} c_{0}(\Pi) - qc_{0}(\Delta')$$
$$= (q^{2} + 2q + 2) + \sum_{\Pi \supset \Delta', \Pi \neq \Pi_{0}} c_{0}(\Pi) - q(q + 2).$$

Hence, there exists a 4-flat Π_2 such that $\Pi_2 \supset \Delta'$, $c_0(\Pi_2) = q^2 + 2q + 2$ and $\Pi_2 \neq \Pi_0$. Let $\Pi_2 \cap C_0 = \delta_2 \cup l_2$ with $\delta_2 \cap l_2 = \emptyset$. Since $\Delta' = \Pi_0 \cap \Pi_2$, we have $\delta_0 \neq \delta_2$. Letting $\Delta_1 = \Pi_1 \cap \Pi_2$, we have

$$q^{3} + 2q^{2} + 3q + 1 = {^{\#}C_{0}} = c_{0}(\Pi_{1}) + \sum_{\Pi \supset \Delta_{1}, \Pi \neq \Pi_{1}} c_{0}(\Pi) - qc_{0}(\Delta_{1})$$

$$\geq (2q^{2} + 2q + 3) + q(q^{2} + 2q + 2) - qc_{0}(\Delta_{1}),$$

whence $c_0(\Delta_1) \geq 2q+2$. By (1), we have $c_0(\Delta_1) = 2q+2$ or q^2+q+2 . In case $c_0(\Delta_1) = 2q+2$, either $l_1 \subset \delta_2$ and $P_0 \in l_2$ or $l_1 = l_2$ and $P_0 \in \delta_2$ holds. In case $l_1 \subset \delta_2$ and $P_0 \in l_2$, since $\Delta_3 = \langle \delta_0, \delta_2 \rangle$ is a solid with $c_0(\Delta_3) \geq 2q^2+q+1$, we have

$$q^{3} + 2q^{2} + 3q + 1 = {^{\#}C_{0}} = \sum_{\Pi \supset \Delta_{3}} c_{0}(\Pi) - qc_{0}(\Delta_{3})$$

$$\leq \sum_{\Pi \supset \Delta_{3}} c_{0}(\Pi) - q(2q^{2} + q + 1),$$

whence there exists a 4-flat Π containing Δ_3 with $c_0(\Pi) \geq 3q^2 + 4$ for $q \geq 3$, which contradicts Claims 1 and 2. In case $l_1 = l_2$ and $P_0 \in \delta_2$, since $l_0 \cap \delta_0 = \emptyset$, $\delta_0 \cap \delta_2$ consists of one point, say P_1 . Then, $\langle P_0, P_1 \rangle \subset \Pi_0$, because $P_0, P_1 \in \Pi_0$.

This is a contradiction. In case $c_0(\Delta_1) = q^2 + q + 2$, we have $l_1 \subset \delta_2$. This implies a contradiction as in the preceding case. This completes the proof. \square

Remark 5. Theorem A implies that there does not exist a $\{\theta_3 + \theta_2 + s, \theta_2 + \theta_1; 5, q\}$ -minihyper for $1 \le s \le q - 1$.

Proof of Theorem B. To prove this theorem, it suffices to show the existence of $[g_q(6,d)+1,6,q^5-q^3-q^2]_q$ code. Let C be a code with the 0-cycle

$$\mathcal{X}_C = [\mathbb{P}^5] - [\Delta_0] - [\delta_1] + [P_0],$$

where Δ_0 is a solid and δ_1 is a plane in \mathbb{P}^5 and $P_0 = \Delta_0 \cap \delta_1$. Then we have the length $n = \theta_5 - \theta_3 - \theta_2 + 1$ of C and the minimum distance $d = q^5 - q^3 - q^2$. Therefore there exist a $[g_q(6,d) + 1, 6, d]_q$ code for $q^5 - q^3 - q^2 - q + 1 \le d \le q^5 - q^3 - q^2$.

References

- [1] N. Hamada, A characterization of some [n,k,d;q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math. 116 (1993), no. 1-3, 229-268.
- [2] N. Hamada and T. Helleseth, The nonexistence of some ternary linear codes and update of the bounds for $n_3(6,d)$, $1 \le d \le 243$, Math. Japon. 52 (2000), no. 1, 31-43.
- [3] R. Hill, Optimal linear codes, Cryptography and coding, II (Cirencester, 1989), 75-104, Inst. Math. Appl. Conf. Ser. New Ser., 33, Oxford Univ. Press, New York, 1992.
- [4] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001), no. 2, 165-177.
- [5] ______, Griesmer bound for linear codes over finite fields, Available: http://www.geocities.com/mars39.geo/griesmer.htm.

EUN JU CHEON
DEPARTMENT OF MATHEMATICS AND RINS
GYEONGSANG NATIONAL UNIVERSITY
JINJU 660-701, KOREA
E-mail address: enju1000@naver.com

TAKAO KATO
DEPARTMENT OF MATHEMATICAL SCIENCES
YAMAGUCHI UNIVERSITY
YAMAGUCHI 753-8512, JAPAN
E-mail address: kato@yamaguchi-u.ac.jp