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ON THE MINIMUM LENGTH OF SOME LINEAR CODES OF
DIMENSION 6

EUN Ju CHEON AND TAKAO KATO

ABSTRACT. For ¢ — ¢® —¢? =g+ 1 £ d £ ¢° — ¢° — ¢%, we prove
the non-existence of a [gq(6,d),6,d]; code and we give a [gq(6,d) +
1,6,d]q code by constructing appropriate 0-cycle in the projective space,

where gq(k,d) = f;& [%‘lv Consequently, we have the minimum length
ng(6,d) = gq(6,d) + 1 for ¢® ~¢> —¢> —g+1 < d < ¢° — ¢* — ¢* and
q23

1. Introduction and preliminaries

One of the interesting problems in coding theory is to determine the value
nq(k, d) which denotes the smallest number n such that an [n, k, d], code exists
for given k, d and ¢. We shall deal with this problem for k£ = 6.

An [n, k,d), code is a k-dimensional linear subspace of F' of minimum dis-
tance d over the finite field F, of order q. The Griesmer bound provides an
important lower bound on the length n for an [n, k, d], code,

k-1 d
n 2 gq(ka d) = Z [E-l,
i=0

where [z] denotes the smallest integer greater than or equal to z. In this paper,
we shall prove the following theorems:

Theorem A. Forq >3, a[g4(6,d),6,d], code does not ezist for ¢° — ¢ —
g+1<d<q® —q® — g2, which means that ng(6,d) > g4(6,d) + 1.

Theorem B. There exists a [g4(6,d) + 1,6,d]q for ¢* —¢* —¢> —gq+1<d <
5_ 3_ 2
T —q—q.
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From the above results, for small ¢ = 3,4, 5, we have
n3{6,d) = g3(6,d) + 1 for d = 205, 206, 207,
n4(6,d) = g4(6,d) + 1 for d = 941,942, 943,944,
ns(6,d) = g5(6,d) + 1 for d = 2971,2972, 2973, 2974, 2975.

When ¢ = 3, it was already determined and we could find it in [5].
In (3], R. Hill constructed a large class of codes which meet the Griesmer
bound and obtained the following theorem:

Theorem 1 ([3]). Let d = s¢"** — 37 ¢“~ ! such that k > uy > up >
<2 up with Uy > Uigqo1 for 1 < i < p—gq+ 1, where s = fag‘i_—l]. If

Zmin{s-{-l;?’} u; < sk, then ng(k,d) = gq(k, d).

i=1

For k < 5, there are many results for ¢ < 5 (see [5]). In this paper, we shall
treat the problem to find the exact value of n4(6,d). By Theorem 1, we have
ng(6,d) = g¢(6,d) for ¢ —* > +1 <d < ¢ and ¢® —¢*~q+1 < d < ¢ —¢*
for any q. For k = 6, the results obtained by Hamada-Helleseth [2] and Maruta
[5] are restricted to the ternary code. Our results is to determine the exact
value of ny(6,d) in the range ¢° — > —¢? — ¢+ 1 < d < ¢* — ¢® ~ ¢* for an
arbitrary ¢ > 3 by using a finite projective geometry.

Let P*~? be the (k—1)-dimensional projective space over F,,. As a notational
convention, in this paper, P, P;,Q, R, {resp. 1,1, 6,8;, A, A;, II, IT;) etc. stand
for points (resp. lines, planes, solids, 4-flats) in P71, We denote by F; the
set of all j-flats in P*~! and 6; the number of all points in P, ie., 0; =
@+ +q+1

Let C be an [n, k, d]; code with a generator matrix G. C is said to be non-
degenerate if every column of G is nonzero. Thus if C is a non-degenerate
code, each column of G can be regarded as a point in P*~!. The formal sum of
columns of G as points in PP~ is called a 0-cycle of the code C, denoted by X
Denoting m(P) > 0 the number of times the point P occurring as a column of
G, we have X = )~ p_pe—1 m(P)P. Then we have the parameters of C' in terms
of the coefficients in the O-cycle X' as follows:

n=degX := Z m(P),
PePk—l
d=n—max{ Y m(P)|H € Fy_s}.
PeH
For a O-cycle Z =} p pr—1 m(P)P, and a subset S C P*=1, we denote the
restriction Z to § by Z(S) = } pcgm(P)P . For simplicity’s sake, we denote
the O-cycle [S]:= > pg P which can be identified with the set S.
For a O-cycle Xo = 3 pepr—1 M{P)P corresponding to a given code C, let
Yo = max{m(P) | P € P*=!}. C is said to be projective provided that vo = 1.
In this paper, we only concern the projective code. Let Vo = [P*~!] - A =
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> pepe—1 (1 — m(P))P, which is called the complement of Xc. We use the
following notations:

c(S) :=deg Xc(S) and ¢o(S) :=deg Ve (S).
We need the following theorems to prove our main results:

Theorem 2 ([4]). Let C be a [go(k,d),k,d], code. Then we have

7
N ) J T PSS

k—1—i
i=0 q
where v; = max{c(L)|L € F;} for 1<j<k-1.
Theorem 3 ([4]). Let C be a [g4(k,d), k,d]q code. Then there ezist j-dimen-
sional subspaces L; in P*=1 with ¢(L;) = ~; for j = 0,1,...,k — 2 such that

Lo C Ly C -+ C Li-2 and that L; gives a [1v;,5 + 1,7v; — vj—1lq code which
attains the Giesmer bound for 1 < 7 <k —2.

To know the structure of minihypers is important to prove our results. A
subset F' with f points in P* is called an { f,m;t, ¢}-minihyper if HFNH) > m
for any hyperplane H in P* and #(F N H) = m for some hyperplane H in P,
where m > 0.

Theorem 4 ([1]). (1) Let F be a {04,84—1;t, q}-minthyper with t > 2. Then
F is an a-flat in P

(2) Let F' be a {#2 + 01,61 + bo; t, } -minshyper with t > 4. Then F consists
of a plane and a line which are disjoint.

2. Proofs of Theorems A and B

A proof of Theorem A. Since the existence of an [n, k,d], code with d > 2
implies the existence of an [n — 1,k,d — 1]4 code, it is sufficient to show that
there does not exist a [¢° + ¢* — ¢* — 24,6, ¢° — ¢® — ¢*> — ¢+ 1], code for ¢ > 3.

Assume that there exists a [¢° + ¢* — ¢% — 2¢,6,¢° — ¢® — ¢* — ¢ + 1], code
C. Then by Theorem 2, we have

Yo=Ln=¢+L, =¢+q¢ p3=+¢ -1 andu=¢"+¢"—g- 1L

Since v = 1, C is a projective code. Let Cy be the set of complement of 0-cycle
of C in P°. For a set § C P%, we note co(S) = #(SN Cp). Then, we have

co(l) > 0 for any line [ C P,

co(6) > 1 for any plane § C P®,

co(4) > g+ 2 for any solid A C P®,

co(IT) > ¢* + 2q + 2 for any 4-flat I7 C P® and
co = co(P°) = ¢° +2¢° + 3¢+ 1.
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Let 1y be a 4-flat with co(ITy) = ¢® +2q+2 = 02 + 6;. Then IIo N Cy consists
of a plane &y and a line Iy with 6, NIy = @ by Theorem 4(2). Thus we have

(1) co(A) =q+2,2¢g+20r ¢* +q+2

for any solid A contained in ITy. For an arbitrary 4-flat IT, we have ¢ (IIoNIT) <
q° + q + 2. Letting Ag = IIy N I1, we have

q3 + 2q2 +3¢+1= #Co = Co(H) + C()(Ho) - QCQ(Ao) + Z Co(H’)
II' DA, M1 #1Tg,IT

> co(IT) +q(g® +2¢+2) — q(¢* + g +2),

whence co(IT) < ¢ +¢* +3g+ 1.
Next, we shall prove that there does not exist 4-flat IT with 2¢®> + 3¢+ 2 <
co(IT) < ¢ +¢% + 3¢+ 1 in the following two claims:

Claim 1. There ezists no 4-flat IT with 2¢°>+3q+2 < co(IT) < @ +¢*+29+1.

Let IT; be a 4-flat with co(IT;) = ¢® + ¢% +2q + 1 — eq — f for some integers
0<e<q¢g’—q—2,0< f<q—1. For any solid A C II;, we have

@ +2¢°+3¢+1= #Cy = co(II,) + Z co(IT) — qeo(4)
M5A, -1,

>+ +20+1—-eq— f+q(g® +29+2) — qco(A).

Hence, cp(4) > ¢>+q+1—e.

Assume there exists a solid A; C I with cg(41) = 2 +q+1—e If
there were 4-flat IT D A; with co(IT) = ¢? + 2q + 2, then by (1), co(41) =
co(ITNIT) = ¢*+q+2, 2g+2 or g+ 2 which would not be equal to ¢ +g+1—e.
Thus, co(IT) > ¢° + 2q + 3 for any 4-flat IT O A;. Hence, we have

@ +2¢°+3¢+ 1= 7Co = co(IT)) + Z co(IT) — geo(Ay)
HDAl,H;énl

> ¢’ +q*+2g+1—eq—f+q(¢® +2¢+3)
—a(¢® +q+1-¢)
=¢+2¢° +4¢+1- f,

which is a contradiction. Therefore, co(A) > ¢%+q+2—e for any solid A C IT;.
Since co(IT1) = ¢® +¢* +2q+1—eq— f and cp(A) > ¢*+q+ 2 — e for any solid
A C II, IT; gives a [¢*—q+eq+f, 5, d']g code with d' > ¢*—¢*+(e—1)(g—1)+].
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By the Griesmer bound, we have

o[ [2) 5] [2

t+e—1)g+f+ V_;H]+[(eﬁl}(q_l)+f]

vV

¢ —qg+eqg+f

v

q2
WEEUEREN CSUELES
q q

Hence, f =0 and e = 1, i.e, co(II1) = ¢® + ¢* + ¢+ 1 = 03 and ¢o(4) > b5 for
any solid A C IT;. By Theorem 4(1), we have II} NCy = Ay for some solid Ag
in IT;. Therefore, cg{A) = 03 or 83 for any solid A C II;. On the other hand,
collloNIT1) = ¢* + g+ 2 for a given 4-flat Iy with co(Ip) = g% + 2q + 2. This
is a contradiction.

Claim 2. There ezists no 4-flat IT with ¢3+¢*+2q+2 < co(I1) < ¢*+¢*+3q+1.

Let II; be a 4-flat with ¢o(I11) = ¢® + ¢*> + 3¢ + 1 — f for some integer
0 < f<g-—1. For any solid A C I, we have

CH2°+3¢+1 = FCh=c(L)+ Y. colll) —geo(D)
HoDAIT#IL
> ¢+ +3¢+ 1~ f+q(* +2¢+2) - geo(A).

Hence, co(4) > ¢?+q+2. Let A; = IIoNIT, for a given 4-flat ITy with co(ITy) =
¢*+2q+2. Since co(A1) = ¢*+q+2, IT; gives a [¢* ~2g+f,5, ¢ ~¢* -2+ f+1],
code which attains the Griesmer bound. By Theorem 2, we have ¢p(l) > 1,
co(d) > 61 and c(A) > 65 + 1 for any line [, plane § and solid A in IT;. Since
IyNCy = dg Ul and dg Nig = B, we have &y C A; N Cy. Then, we have

CH@+3g+1-f = co(Il) = co(Ar) + > co(4) — geo(do)
11D ADbg , A#4Dy

= ¢?+qg+2+ Z colA) — g(g* +q+1).
D AD60, A£A,
Therefore, ZHDAD&O,A#& co(Q) = 2¢°+¢>+3g—1—f > 2¢°+¢%+2q, whence
there exists a solid Ag C II; containing & with ¢o(Ao) > 2¢® + g + 2. Since
co(l) > 1for every linel C ITy, the fact that co(II1\Ao) < ¢3—¢*+29—1—f < ¢3
implies that Ay C C, i.e., eo(Ag) = g3 + ¢? + ¢+ 1. Then, we have

@ +2¢° +3¢+1=#C, = o)+ > colIT) - qeo(4o)
3400, T#

G+ +3q+1-f+ Y ()
’ DAy, IT£H,

Y

~q(@+q*+q+1).
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Hence,

Yo D) = a@++20+1)+f <a(d®+¢*+20+2),
ITD Ay, IT#IT

whence there exists a 4-flat IT with ¢® + ¢+ q+1<co(II) < @ +¢* +2¢+1.
This contradicts Claim 1. Thus, we have Claim 2.
Let Ao be a solid contained in ITy with ¢g(Ao) = ¢ + g+ 2. Then, we have
C+2¢2+3¢+1 = co(Ilp) + Z co(IT) — geo(Ao)
DA, I#ITy

(P +20+2+ Y o) —ald®+q+2),
I Aq M,

whence 3 75 4, 1, 0UT) = 2¢° + 2¢® + 3¢ — 1. Thus, there exists a 4-flat
II; containing Ag with co(IT;) > 2¢° + 2¢ + 3. By Claims 1 and 2, we have
co(IT1) < 2¢® 4 3g+ 1. Note that Ag N Cy = dg U{ Py} for a point Fy € lp. For
a line [; C &y, there exists a solid A’ C ITp with ¢o(4A’) = ¢ + 2 which contains
l; and Py. Then, we have

C+2¢°+3¢+1 = co(Ilp) + Z co(IT) — geo(A")
DA IT#1,

@+2+2)+ Y, o) —qlg+2).
oA IT#£,

Hence, there exists a 4-flat IT, such that II; D A, co(IT2) = ¢ + 29+ 2 and
Iy # Ily. Let Iy NCo = 62 Uly with daNliy = 0. Since A’ = IIyN II3, we have
8o # 62. Letting Ay = IT1 N 11, we have

C+2¢7+3¢g+1 = *#Cy=co(Il) + Z co(IT) — geo(Ay)
I AL IT£IT
> (2¢% +2g+3) +q(¢® + 29+ 2) — qeo(4r),

whence co(A1) > 2g+2. By (1), we have co(A,) = 2¢+2 or ¢®>+q+2. In case
co(A1) = 2g+2, either I; C 6 and Py € [z or l; = Iz and Py € 4 holds. In case
l; C 65 and Py € ly, since Az = (6o, d2) is a solid with co(A3) > 2¢* + ¢ + 1,
we have

q3+2q2+3q+1

#Co = Z co(IT) — qco(A3)

ITD A3

> eo(IT) - g(2¢° + g+ 1),
IIDA3

IA

whence there exists a 4-flat IT containing Az with co(IT) > 3¢% + 4 for ¢ > 3,
which contradicts Claims 1 and 2. In case l; = I and Py € J, since loNdy = B,
80N &y consists of one point, say P;. Then, (P, P1) C Ilo, because Py, P1 € Ilo.
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This is a contradiction. In case co(A1) = g% + ¢ + 2, we have [; C d. This
implies a contradiction as in the preceding case. This completes the proof. O

Remark 5. Theorem A implies that there does not exist a {83 + 82 + 5,62 +
61,5, ¢}-minihyper for 1 < s < ¢ - 1.

Proof of Theorem B. To prove this theorem, it suffices to show the existence
of [g4(6,d) +1,6,¢° — ¢° — g%}, code. Let C be a code with the 0-cycle

Xe = [P°] - [Ao] - [6:] + [Po),

where 4q is a solid and ¢; is a plane in P® and Py = AgNd,. Then we have the
length n = 65 — 63 — 85 + 1 of C and the minimum distance d = ¢° — ¢° — ¢°.
Therefore there exist a [gq(6,d) + 1,6,d]y code for ¢° —¢* ~¢? —g+1<d <
P -q¢ -4 O
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