WEAK FORMS OF SUBTRACTION ALGEBRAS

KYOUNG JA LEE, YOUNG BAE JUN, AND YOUNG HEE KIM

ABSTRACT. As a weak form of a subtraction algebra, the notion of weak subtraction algebras is introduced, and its examples are given. A method to make a weak subtraction algebra from a quasi-ordered set is provided.

1. Introduction

B. M. Schein [6] considered systems of the form $(\Phi; \circ, \setminus)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence $(\Phi; \circ)$ is a function semigroup) and the set theoretic subtraction "\" (and hence $(\Phi; \setminus)$) is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [7] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y. B. Jun et al. [4] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. In [3], Y. B. Jun and H. S. Kim established the ideal generated by a set, and discussed related results. Y. B. Jun and K. H. Kim [5] introduced the notion of prime and irreducible ideals of a subtraction algebra, and gave a characterization of a prime ideal. They also provided a condition for an ideal to be a prime/irreducible ideal. In this paper, we introduce the notion of weak subtraction algebras, and give its examples. We investigate relations between a subtraction algebra and a weak subtraction algebra. We give a method to make a weak subtraction algebra from a quasi-ordered set.

2. Preliminaries

By a subtraction algebra we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

(S1)
$$x - (y - x) = x$$
;

(S2)
$$x - (x - y) = y - (y - x);$$

Received October 30, 2006.

2000 Mathematics Subject Classification. 03G25, 06B10, 06D99.

Key words and phrases. weak subtraction algebra, induced quasi-ordering.

This paper was made in BARAS 2005 Conference at Mt. Seorak in Korea.

(S3)
$$(x-y)-z=(x-z)-y$$
.

The last identity permits us to omit parentheses in expressions of the form (x-y)-z. The subtraction determines an order relation on X: $a \le b \Leftrightarrow a-b=0$, where 0=a-a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \le)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0,a] is a Boolean algebra with respect to the induced order. Here $a \land b = a - (a-b)$; the complement of an element $b \in [0,a]$ is a-b; and if $b,c \in [0,a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c))$$

= $a - ((a - b) - ((a - b) - (a - c))).$

In a subtraction algebra, the following are true (see [4, 5]):

- (a1) (x-y) y = x y.
- (a2) x 0 = x and 0 x = 0.
- (a3) (x-y)-x=0.
- (a4) $x (x y) \le y$.
- (a5) (x-y) (y-x) = x y.
- (a6) x (x (x y)) = x y.
- (a7) $(x-y) (z-y) \le x-z$.
- (a8) $x \leq y$ if and only if x = y w for some $w \in X$.
- (a9) $x \le y$ implies $x z \le y z$ and $z y \le z x$ for all $z \in X$.
- (a10) $x, y \le z$ implies $x y = x \land (z y)$.
- (a11) $(x \wedge y) (x \wedge z) \leq x \wedge (y z)$.

Definition 2.1 ([4]). A nonempty subset A of a subtraction algebra X is called an *ideal* of X if it satisfies

- $0 \in A$
- $(\forall x \in X)(\forall y \in A)(x y \in A \Rightarrow x \in A)$.

Lemma 2.2 ([5]). An ideal A of a subtraction algebra X has the following property:

$$(\forall x \in X)(\forall y \in A)(x \le y \Rightarrow x \in A).$$

3. Weak forms of subtraction algebras

We introduce more weak forms of subtraction algebras.

Definition 3.1. By a weak subtraction algebra (WS-algebra), we mean a triplet (W, -, 0), where W is a nonempty set, - is a binary operation on W and $0 \in W$ is a nullary operation, called zero element, such that

- (b1) $(\forall x \in W) (x 0 = x, x x = 0),$
- (b2) $(\forall x, y, z \in W) ((x y) z = (x z) y),$
- (b3) $(\forall x, y, z \in W) ((x y) z = (x z) (y z)).$

Example 3.2. Let $W = \{0, a, b, c\}$ be a set with the following Cayley tables.

_	-1	0	a	b	c	2	0	a	b	c	
0)	0	0	0	0	0	0	0	0	0	-
а	ι	a	0	0	0	a	a	0	a	a	
b	,	b	0	0	0	b	b	b	0	0	
C	;	c	0	0	0	c	c	c	0	0	
	·										
_	-3	0	a	b	c	$^{-4}$	0	a	b	c	
0)	0	0	0	0	0	0	0	0	0	
a	ı	a	0	0	0	a	a	0	0	0	
b	,	b	b	0	0	b	b	b	0	b	
C	,	c	c	c	0	c	c	c	c	0	
_5	0	a	b	c	d	-6	0	a	b	c	
$\frac{3}{0}$	$\frac{0}{0}$	0	0	0	0	$\frac{}{}$	0	$\frac{\alpha}{0}$	0	0	
a	a	0	0	0	0	a	a	0	a	0	
b	b	b	0	b	0	b	b	b	0	b	
c	c	c	c	0	0	c	c	c	c	0	
d	d	d	c	b	0	d	d	d	c	b	
۳ _ا	w	w	Ü	Ü	Ü	CC .	u	w	C	Ü	
-7	0	a	b	c	d	-8	0	a	b	c	
	0	0	0	0	0	0	0	0	0	0	_
- 1	a	0	0	0	0	a	a	0	0	0	
b	b	b	0	0	0	b	b	b	0	0	
		_	c	0	c	c	c	c	c	0	
- 1	c	c	C	U	·			·	\sim	v	

It is routine to check that (W, -1, 0), (W, -2, 0), (W, -3, 0), (W, -4, 0), (W, -5, 0), (W, -6, 0), (W, -7, 0) and (W, -8, 0) are WS-algebras.

Proposition 3.3. For a WS-algebra (W, -, 0), we have

- (i) $(\forall x \in W) (0 x = 0)$,
- (ii) $(\forall x, y \in W)$ ((x-y)-x=0), (iii) $(\forall x, y, z \in W)$ $(x-y=0 \Rightarrow (x-z)-(y-z)=0)$.

Proof. (i) Putting x = y = z in (b3) and using (b1), we have

$$0 = 0 - 0 = (x - x) - (x - x) = (x - x) - x = 0 - x.$$

(ii) Replacing z by x in (b3) and using (b1) and (i), we get

$$(x-y) - x = (x-x) - (y-x) = 0 - (y-x) = 0.$$

(iii) Let $x, y, z \in W$ be such that x - y = 0. Then

$$(x-z) - (y-z) = (x-y) - z = 0 - z = 0.$$

This completes the proof.

Define a relation \leq on a WS-algebra (W, -, 0) as follows:

$$(\forall x, y \in W) (x \le y \Leftrightarrow x - y = 0).$$

This relation \leq may not be an order relation on a WS-algebra. In fact, in the WS-algebra (W, -1, 0) in Example 3.2, we can not guarantee the antisymmetry of \leq .

Proposition 3.4. If a WS-algebra (W, -, 0) satisfies the identity

$$(\forall x, y \in W) (x - (x - y) = y - (y - x)),$$

then \leq is an order relation on W and 0 is the least element.

Proof. By (b1), \leq is reflexive. Proposition 3.3(i) implies $0 \leq x$ for all $x \in W$. Let $x, y \in W$ be such that $x \leq y$ and $y \leq x$. Then x - y = 0 and y - x = 0, so

$$x = x - 0 = x - (x - y) = y - (y - x) = y - 0 = y$$

proving the antisymmetry of \leq . Now let $x,y,z\in W$ be such that $x\leq y$ and $y\leq z.$ Then

$$x-z = (x-0)-z = (x-(x-y))-z$$

$$= (y-(y-x))-z = (y-z)-(y-x)$$

$$= 0-(y-x) = 0$$

which yields $x \leq z$. Hence \leq is an order relation on W.

Lemma 3.5. Every subtraction algebra X satisfies the following equality:

$$(\forall x, y, z \in X) ((x - y) - z = (x - z) - (y - z)).$$

Proof. For any $x, y, z \in X$, we have

$$((x-z)-(y-z))-((x-y)-z)$$

$$=(((x-z)-z)-(y-z))-((x-y)-z) by (a1)$$

$$\leq ((x-z)-y)-((x-y)-z) by (a7) and (a9)$$

$$=((x-y)-z)-((x-y)-z) by (S3)$$

$$=0,$$

and so
$$((x-z)-(y-z))-((x-y)-z)=0$$
, that is,
 $(x-z)-(y-z)\leq (x-y)-z$.

Using (S3), (a3) and (a7), we get

$$((x-y)-z)-((x-z)-(y-z))$$

= $((x-z)-y)-((x-z)-(y-z))$
< $(y-z)-y=0$,

and therefore
$$((x-y)-z)-((x-z)-(y-z))=0$$
, i.e., $(x-y)-z<(x-z)-(y-z)$.

Consequently the desired result is valid.

Using Lemma 3.5, we have the following theorem.

Theorem 3.6. Every subtraction algebra is a WS-algebra.

The converse of Theorem 3.6 may not be true as seen in the following example.

Example 3.7. The WS-algebras in Example 3.2 are not subtraction algebras.

A reflexive and transitive relation \mathcal{R} on a set W is called a *quasi-ordering* of W, and the couple (W, \mathcal{R}) is then called a *quasi-ordered set* (see [2, p. 20]).

Proposition 3.8. Let \mathcal{R}_W be a relation on a WS-algebra W defined by

$$(\forall x, y \in W) ((x, y) \in \mathcal{R}_W \iff y - x = 0).$$

Then \mathcal{R}_W is a quasi-ordering of W. Moreover,

- (i) $(\forall x \in W) ((x,0) \in \mathcal{R}_W)$,
- (ii) $(\forall x \in W) ((0, x) \in \mathcal{R}_W \Rightarrow x = 0)$.

We then call \mathcal{R}_W the induced quasi-ordering of a WS-algebra W.

Proof. Since x - x = 0 for all $x \in W$, we have $(x, x) \in \mathcal{R}_W$, that is, \mathcal{R}_W is reflexive. Let $x, y, z \in W$ be such that $(x, y) \in \mathcal{R}_W$ and $(y, z) \in \mathcal{R}_W$. Then y - x = 0 and z - y = 0. Using (a2) and Lemma 3.5, we have

$$0 = 0 - x = (z - y) - x = (z - x) - (y - x) = (z - x) - 0 = z - x,$$

and hence $(x, z) \in \mathcal{R}_W$, that is, \mathcal{R}_W is transitive. Hence \mathcal{R}_W is a quasi-ordering of W. Moreover, (i) follows directly from Proposition 3.3(i). Now let $x \in W$ be such that $(0, x) \in \mathcal{R}_W$. Then x = x - 0 = 0. This completes the proof.

Proposition 3.9. Let \mathcal{R}_W be the induced quasi-ordering of a WS-algebra W. Then

- (i) $(\forall x, y, z \in W)$ $((x, y) \in \mathcal{R}_W \Rightarrow (x z, y z) \in \mathcal{R}_W)$.
- (ii) $(\forall x, y, z \in W)$ $((x, y) \in \mathcal{R}_W \Rightarrow (z x, z y) \in \mathcal{R}_W)$.
- (iii) $(\forall x, y \in W)$ $((y, x (x y)) \in \mathcal{R}_W)$.
- (iv) $(\forall x, y, z \in W) ((x y, (x z) (y z)) \in \mathcal{R}_W).$

Proof. (i) and (ii). Let $x, y, z \in W$ be such that $(x, y) \in \mathcal{R}_W$. Then y - x = 0, and so

$$(y-z)-(x-z)=(y-x)-z=0-z=0$$
,

and

$$(z-x) - (z-y) = (z - (z - y)) - x = (z - x) - ((z - y) - x)$$

$$= (z - x) - ((z - x) - (y - x))$$

$$= (z - x) - ((z - x) - 0)$$

$$= (z - x) - (z - x) = 0.$$

Hence $(x-z,y-z) \in \mathcal{R}_W$ and $(z-y,z-x) \in \mathcal{R}_W$ for all $z \in W$. (iii) is by (b1) and (b2).

(iv) Proposition 3.3(ii) implies that $(x, x-z) \in \mathcal{R}_W$ for all $x, z \in W$. It follows from (b2), Lemma 3.5 and Proposition 3.9(i) that

$$(x-y, (x-z)-(y-z)) = (x-y, (x-y)-z) = (x-y, (x-z)-y) \in \mathcal{R}_W$$
 for all $x, y, z \in W$.

For every quasi-ordering \mathscr{R} of W, denote by $\mathscr{E}_{\mathscr{R}}$ the relation on W given by

$$(\forall x, y \in W) ((x, y) \in \mathscr{E}_{\mathscr{R}} \Leftrightarrow (x, y) \in \mathscr{R}, (y, x) \in \mathscr{R}).$$

Obviously $\mathscr{E}_{\mathscr{R}}$ is an equivalence relation on W, which is called an *equivalence* relation induced by \mathscr{R} . Denote by $[a]_{\mathscr{E}_{\mathscr{R}}}$ the equivalence class containing a and by $W/\mathscr{E}_{\mathscr{R}}$ the set of all equivalence classes of W with respect to $\mathscr{E}_{\mathscr{R}}$, that is,

$$[a]_{\mathscr{E}_{\mathscr{R}}} = \{x \in W \mid (x, a) \in \mathscr{E}_{\mathscr{R}}\} \text{ and } W/\mathscr{E}_{\mathscr{R}} = \{[a]_{\mathscr{E}_{\mathscr{R}}} \mid a \in W\}.$$

Define a relation $\leq_{\mathscr{R}}$ on $W/\mathscr{E}_{\mathscr{R}}$ by

$$(\forall a, b \in W) ([a]_{\mathscr{E}_{\mathscr{R}}} \preceq_{\mathscr{R}} [b]_{\mathscr{E}_{\mathscr{R}}} \Leftrightarrow (a, b) \in \mathscr{R}).$$

Then $\preceq_{\mathscr{R}}$ is a partial order on $W/\mathscr{E}_{\mathscr{R}}$, and so $(W/\mathscr{E}_{\mathscr{R}}, \preceq_{\mathscr{R}})$ becomes a poset, which is called a *poset assigned to the quasi-ordered set* (W,\mathscr{R}) . A relation \mathscr{R} on W is said to be *compatible* if $(x-u,y-v)\in\mathscr{R}$ whenever $(x,y)\in\mathscr{R}$ and $(u,v)\in\mathscr{R}$ for all $x,y,u,v\in W$. A compatible equivalence relation on W is called a *congruence relation* on W. The set

$$[0]_{\mathscr{R}} = \{x \in W \mid (x,0) \in \mathscr{R}\}\$$

is called the *kernel* of \mathcal{R} .

Theorem 3.10. Let \mathcal{R}_W be the induced quasi-ordering of a WS-algebra W and let $\Theta = \mathcal{E}_{\mathcal{R}_W}$ be the equivalence relation induced by \mathcal{R}_W . Then

- (i) Θ is a congruence relation on W with kernel $[0]_{\Theta} = \{0\}$.
- (ii) the quotient algebra $(W/\Theta, \ominus, [0]_{\Theta})$ is a WS-algebra, where the operation \ominus on W/Θ is defined by

$$[a]_{\Theta} \ominus [b]_{\Theta} = [a-b]_{\Theta}.$$

Proof. (i) Note that Θ is an equivalence relation on W. Let $x, y, u, v \in W$ be such that $(x, y) \in \Theta$ and $(u, v) \in \Theta$. Then $(x, y) \in \mathscr{R}_W$, $(y, x) \in \mathscr{R}_W$, $(u, v) \in \mathscr{R}_W$, and $(v, u) \in \mathscr{R}_W$. Using (i) and (ii) of Proposition 3.9, we obtain $(x - u, x - v) \in \mathscr{R}_W$ and $(x - v, y - v) \in \mathscr{R}_W$. By the transitivity of \mathscr{R}_W , we get $(x - u, y - v) \in \mathscr{R}_W$. Similarly, we have $(y - v, x - u) \in \mathscr{R}_W$. Hence $(x - u, y - v) \in \Theta$, that is, Θ is a congruence relation on W. Now if $x \in [0]_{\Theta}$, then $(x, 0) \in \Theta$ and so $(0, x) \in \mathscr{R}_W$. It follows from Proposition 3.8(ii) that x = 0. Hence $[0]_{\Theta} = \{0\}$.

Let W be a WS-algebra and $\emptyset \neq K \subseteq W$. Denote by θ_K the relation on W given by

$$(\forall x, y \in W) ((x, y) \in \theta_K \Leftrightarrow x - y \in K, y - x \in K).$$

Lemma 3.11. If θ_K is reflexive for every nonempty subset K of a WS-algebra W, then $[0]_{\theta_K} = K$.

Proof. Suppose that θ_K is reflexive for every nonempty subset K of W. Then $0=x-x\in K$. If $a\in K$, then $a-0=a\in K$ and $0-a=0\in K$. Hence $(a,0)\in \theta_K$, that is, $a\in [0]_{\theta_K}$. Conversely if $a\in [0]_{\theta_K}$, then $(a,0)\in \theta_K$ and hence $a=a-0\in K$. Therefore $[0]_{\theta_K}=K$.

Lemma 3.12. Let K be a nonempty subset of a WS-algebra W. Assume that the relation θ_K is an equivalence relation on W. Then

$$a \in K$$
, $a - b \in K$ and $b - a = 0$ imply $b \in K$.

Proof. Suppose that $a \in K$, $a - b \in K$ and b - a = 0. Then $b - a = 0 \in [0]_{\theta_K} = K$, and so $(a, b) \in \theta_K$. Since θ_K is an equivalence relation on W, a and b belong to the same class of θ_K . Hence $a \in K = [0]_{\theta_K}$ implies $b \in [0]_{\theta_K} = K$. This completes the proof.

We provide a method to construct a WS-algebra from a quasi-ordered set.

Theorem 3.13. Let (W, \mathcal{R}) be a quasi-ordered set. Suppose $0 \notin W$ and $W_0 = W \cup \{0\}$. Define a binary operation - on W_0 as follows:

$$x - y = \begin{cases} 0 & if (x, y) \in \mathcal{R} \\ x & otherwise. \end{cases}$$

Then $(W_0, -, 0)$ is a WS-algebra.

Proof. Since \mathscr{R} is reflexive, obviously x-x=0 for all $x\in W$. Since $(x,0)\notin\mathscr{R}$ for every $x\in W$, we have x-0=x for all $x\in W$. Note that 0-x=0 for all $x\in W$. Assume that $(x,y)\notin\mathscr{R}$ and $(x,z)\notin\mathscr{R}$. Then

$$(x-y)-z = x-z = x = x-y = (x-z)-y.$$

If $(x, y) \in \mathcal{R}$ and $(x, z) \notin \mathcal{R}$, then

$$(x-y)-z=0-z=0=x-y=(x-z)-y.$$

Suppose that $(x,y) \notin \mathcal{R}$ and $(x,z) \in \mathcal{R}$. Then

$$(x-y)-z=x-z=0=0-y=(x-z)-y$$
.

If $(x,y) \in \mathcal{R}$ and $(x,z) \in \mathcal{R}$, then

$$(x-y)-z=0-z=0=0-y=(x-z)-y.$$

This proves the condition (b2) holds. To verify the condition (b3), we consider the following cases:

- (1) $(x,y) \in \mathcal{R}$ and $(y,z) \in \mathcal{R}$.
- (2) $(x,y) \notin \mathcal{R}$ and $(y,z) \in \mathcal{R}$.
- (3) $(x,y) \in \mathcal{R}$ and $(y,z) \notin \mathcal{R}$.
- (4) $(x,y) \notin \mathcal{R}$ and $(y,z) \notin \mathcal{R}$.

For the case (1), we have $(x, z) \in \mathcal{R}$, and so

$$(x-y)-z=0-z=0=0-0=(x-z)-(y-z).$$

Case (2) implies that

$$(x-y)-z=x-z=(x-z)-0=(x-z)-(y-z).$$

For the case (3), we get first (x-y)-z=0-z=0. If $(x,z)\in \mathcal{R}$, then

$$(x-z) - (y-z) = 0 - (y-z) = 0 = (x-y) - z;$$

if $(x, z) \notin \mathcal{R}$, then

$$(x-z) - (y-z) = x - y = 0 = (x-y) - z.$$

For the case (4), if $(x, z) \in \mathcal{R}$, then

$$(x-y)-z=x-z=0=0-y=(x-z)-(y-z).$$

If $(x,z) \notin \mathcal{R}$, then

$$(x-y)-z = x-z = x = x-y = (x-z)-(y-z).$$

Hence the condition (b3) is valid. Therefore $(W_0, -, 0)$ is a WS-algebra.

References

- J. C. Abbott, Sets, Lattices, and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass. 1969.
- [2] G. Birkhoff, Lattice Theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV American Mathematical Society, Providence, R.I. 1967.
- [3] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129-134.
- [4] Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. 61 (2005), no. 3, 459-464.
- [5] Y. B. Jun and K. H. Kim, Prime and irreducible ideals in subtraction algebras, Ital. J. Pure Appl. Math. (submitted)
- [6] B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.
- [7] B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445-447.

KYOUNG JA LEE

DEPARTMENT OF MATHEMATICS EDUCATION

HANNAM UNIVERSITY

Daejeon 306-791, Korea

E-mail address: kjlee@hnu.kr

YOUNG BAE JUN

DEPARTMENT OF MATHEMATICS EDUCATION (AND RINS)

GYEONGSANG NATIONAL UNIVERSITY

CHINJU 660-701, KOREA

E-mail address: skywine@gmail.com

YOUNG HEE KIM

DEPARTMENT OF MATHEMATICS

CHUNGBUK NATIONAL UNIVERSITY

CHONGJU 361-763, KOREA

E-mail address: yhkim@chungbuk.ac.kr