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WEAK FORMS OF SUBTRACTION ALGEBRAS

Kyounc JA LEE, YOUNG BAE JUN, AND YOUNG HEE KiMm

ABSTRACT. As a weak form of a subtraction algebra, the notion of weak
subtraction algebras is introduced, and its examples are given. A method
to make a weak subtraction algebra from a quasi-ordered set is provided.

1. Introduction

B. M. Schein [6] considered systems of the form (®;o0,\), where ® is a set
of functions closed under the composition “o” of functions (and hence (®;0) is
a function semigroup) and the set theoretic subtraction “\” (and hence (®;\)
is a subtraction algebra in the sense of [1]). He proved that every subtrac-
tion semigroup is isomorphic to a difference semigroup of invertible functions.
B. Zelinka [7] discussed a problem proposed by B. M. Schein concerning the
structure of multiplication in a subtraction semigroup. He solved the prob-
lem for subtraction algebras of a special type, called the atomic subtraction
algebras. Y. B. Jun et al. [4] introduced the notion of ideals in subtraction
algebras and discussed characterization of ideals. In [3], Y. B. Jun and H. S.
Kim established the ideal generated by a set, and discussed related results.
Y. B. Jun and K. H. Kim [5] introduced the notion of prime and irreducible
ideals of a subtraction algebra, and gave a characterization of a prime ideal.
They also provided a condition for an ideal to be a prime/irreducible ideal. In
this paper, we introduce the notion of weak subtraction algebras, and give its
examples. We investigate relations between a subtraction algebra and a weak
subtraction algebra. We give a method to make a weak subtraction algebra
from a quasi-ordered set.

2. Preliminaries

By a subtraction algebra we mean an algebra (X;—) with a single binary
operation “—” that satisfies the following identities: for any z,y,z € X,

(81) z—(y—2) =1

(82) 2 —(z—y)=y—(y—2);
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(S3) w—y)—z=(z—2)~y

The last identity permits us to omit parentheses in expressions of the form
(z — y) — z. The subtraction determines an order relation on X: a < b «
a—b =0, where 0 = a — a is an element that does not depend on the choice
of a € X. The ordered set (X; <) is a semi-Boolean algebra in the sense of [1],
that is, it is a meet semilattice with zero 0 in which every interval [0,a] is a
Boolean algebra with respect to the induced order. Here a Ab = a — (a — b);
the complement of an element b € [0,a] is a — b; and if b, ¢ € [0, a], then

bve = (MAd)Y =a-((a—b)A(a—c))
= a—((a-b)=((a—b)—(a—0)))
In a subtraction algebra, the following are true (see [4, 5]):
(al) @-y)-—y=z-y
(a2) z—0=zand 0 —z = 0.
(a3) (x—y)—z=0.
(ad) z—(z—y) <y
(a5) (z-y)-(y—z)=2 -y
(a6) z—(z—(z-y)) =z -y
(@7) (z-y)—(z-y) <z -2
(a8) z <y if and only if + = y — w for some w € X.
(29) z<yimpliesz —z<y—zandz—y<z—zxforalzeX.
(a10) z,y < z impliessz —y =z A (2 — y).
(all) (zAy)—(zAz) <z A(y—2).
Definition 2.1 ([4]). A nonempty subset A of a subtraction algebra X is called
an ideal of X if it satisfies

e 0cA
e (VreX)WyeA)(z—yeA=zcl).

Lemma 2.2 ([5]). An ideal A of a subtraction algebra X has the following

property:
(Vz € X)(Vy € A)(z <y = = € A).

3. Weak forms of subtraction algebras
We introduce more weak forms of subtraction algebras.

Definition 3.1. By a weak subtraction algebra (WS-algebra), we mean a triplet
(W, —,0), where W is a nonempty set, — is a binary operation on W and 0 € W
is a nullary operation, called zero element, such that

(bl) (VzeW) (z—-0=2z,z—1=0),

(b2) (Vz,y,2€ W) ((z—y) —z=(z-2) — ),

(b3) (V2,y,2€ W) (z—y) —z=(z—2) - (y — 2))-

Example 3.2. Let W = {0, a,b, c} be a set with the following Cayley tables.
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—110 a b ¢ — {0 a b ¢

0 |0 0 0O 0 [0 0 0 O

a |la 0 0 O a jla 0 a a

b tb 0 0 O b |b b 0 0

c |lc 000 c {c ¢ 00

—310 a b ¢ — |0 a b ¢

0 0 0 0O 0 10 0 0 O

a la 0 0 O a |a 0 0 0

b |b b 0 O b |b b 0 b

c |ec ¢ ¢ O ¢c |lc ¢ ¢ O
510 a b ¢ d -0 a b ¢ d
0 |0 00 00O 0 [0 OO OO
a ja 0 0 0 O a |a 0 a 0 O
b {b b 0O b O b |[b b 0 b O
c |lec ¢c e 0O ¢c |lec ¢ ¢ 00
d |d d ¢ b 0 d |d d ¢ b 0
— 10 a b ¢ d 510 a b ¢ d
0 {0 0 0 0 O 0 |00 00O
a fa 0 0 0 O a |la 0 0 0 O
b |b b 0 0 0 b {b b 0 0 b
c |lc ¢ ¢ 0 ¢ ¢c |lc ¢ ¢ 0 ¢
d |d d d d 0 d |d d d d O

It is routine to check that (W, —1,0), (W, —2,0), (W, —3,0), (W, —4,0), (W, —s,0),
(W, —6,0), (W, —7,0) and (W, —g,0) are WS-algebras.

Proposition 3.3. For a WS-algebra (W, —,0), we have
(i) (Ve e W) (0—z =0),
(i) (Vz,y e W) ((z—y) -z =0),
(i) (Vz,y,2€e W) (z—y=0= (z—2)— (y—z)=0).

Proof. (i) Putting z =y = 2 in (b3) and using (b1), we have
0=0-0=(z—z)—(z~-z)=(z—2)—-2=0—1.
(ii) Replacing z by z in (b3) and using (b1) and (i), we get
(z-y)-z=(-2)-(@y-2)=0-(y—=2)=0.
(iii) Let z,y,z € W be such that z —y = 0. Then
x-2)-(y—2)=(@-y)—2=0—2=0.
This completes the proof. O
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Define a relation < on a WS-algebra (W, —,0) as follows:
(Vz,ye W)(z<y & z—y=0).

This relation < may not be an order relation on a WS-algebra. In fact, in the
WS-algebra (W, —1,0) in Example 3.2, we can not guarantee the antisymmetry
of <.

Proposition 3.4. If a WS-algebra (W, —,0) satisfies the identity
(Vo,y e W) (z—(z-y)=y—(y—72)),
then < is an order relation on W and 0 is the least element.

Proof. By (bl), < is reflexive. Proposition 3.3(i) implies 0 < z for all z € W.
Let z,y € W be such that z <y and y <z. Thenx —y=0and y —z =0, so
z=z-0=z—-(z-y)=y-(y—z)=y-0=y
proving the antisymmetry of < . Now let z,y,z € W be such that z <y and

y < z. Then

t—2 = (z-0-2=@-(x—-y))—=2
= (y—(w-2)-z2=@y-2)-(y—2
= 0-(y—-z)=0
which yields z < z. Hence < is an order relation on W. O

Lemma 3.5. Every subtraction algebra X satisfies the following equality:
(Vz,y,2€ X)((z—y) - 2= (& —2) — (y - 2))
Proof. For any z,y,z € X, we have

(x~2)—(y—2)) - ((z-y) —2)
=(((z-2)-2) - (y )~ ((z—y)—=2) by (al)
<((z—2)-y)—((z—y)—2) by (a7)and (a9)
=((z-y)-2)—((z-y)—2) by (SY)
and so ((x — z) — (y — 2)) — ((z — y) — z) = 0, that is,
(z-2)-(y-2)<(z—-y) -2
Using (S3), (a3) and (a7), we get
(z—y)—2)— (& -2) - (y—2))
=(z-2)-y) - (z-2)-(y—2))
< (y - Z) —y= Oa
and therefore ((z —y) — 2) — ((z — 2) — (y — 2)) =0, i.e,,
z-y)-2<(z—-2)—(y—2)
Consequently the desired result is valid. a

Using Lemma 3.5, we have the following theorem.
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Theorem 3.6. Every subtraction algebra is a WS-algebra.

The converse of Theorem 3.6 may not be true as seen in the following ex-
ample.

Example 3.7. The WS-algebras in Example 3.2 are not subtraction algebras.

A reflexive and transitive relation & on a set W is called a quasi-ordering
of W, and the couple (W, %) is then called a quasi-ordered set (see [2, p. 20]).

Proposition 3.8. Let Zw be a relation on a WS-algebra W defined by
(Vz,yeW)((z,y) € %w & y—2=0).

Then Zw is a quasi-ordering of W. Moreover,

(i) (vz e W) ((z,0) € Zw),
(i) (Vz e W) ((0,z) € Zw = z =0).

We then call Zw the induced quasi-ordering of a WS-algebra W.

Proof. Since z —z = 0 for all x € W, we have (z,z) € Zw, that is, Zw is
reflexive. Let z,y,z € W be such that (z,y) € Zw and (y,2) € Zw. Then
y—z =0and z —y = 0. Using (a2) and Lemma 3.5, we have

0=0-z=@~-y)-2z=-2)-(@y—x)=(z—z)—-0=2—z,
and hence (x, z) € Zw, that is, Zw is transitive. Hence %y is a quasi-ordering

of W. Moreover, (i) follows directly from Proposition 3.3(i). Now let z € W be
such that (0,z) € Zw. Then z = z — 0 = 0. This completes the proof. ]

Proposition 3.9. Let Zw be the induced quasi-ordering of a WS-algebra W.
Then
(1) (Vx,y,z € W) ((x:y) E.@W = (iE %Y Z) E%EV)'
(il (Vz,y,z€ W) ((z,y) € Bw = (2 — 2,2 —y) € Bw).
(iti) (Vz,y € W) ((y,z — (z — v)) € Zw).
(iv) (Vz,y,2€ W) ((z -y, (- 2) - (y — 2)) € Zw).

Proof. (i) and (ii). Let z,y,z € W be such that (z,y) € Zw. Then y —z =0,
and so
(y—2)—(@@-2)=(y-2)-2=0~-2=0,

and
-0)-(-y) = (:-(-y)-2=G-2)- -y -z
= (z-2)- (¢-2) - (y-2))
=(z—z)-({z—x)—-0
=(z—z)-(z—x)=0.

Hence (z—2,y—2) € Zw and (z —y,z— 1) € Bw forall z e W.
(i) is by (b1) and (b2).
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(iv) Proposition 3.3(ii) implies that (z, ¢ — 2) € Zw forall z,z ¢ W. It
follows from (b2), Lemma 3.5 and Proposition 3.9(i) that

(e-v @-2--2) = (e-y @-y)=2) = (-9, (e-2)-y) € Bw
for all x,y,z € W. g

For every quasi-ordering Z of W, denote by &% the relation on W given by
(V‘%y € W) ((z,y} €Eég & (57 y) € ‘@a (y,a:) € '92)

Obviously &% is an equivalence relation on W, which is called an equivalence
relation induced by Z. Denote by [a]s, the equivalence class containing a and
by W/&% the set of all equivalence classes of W with respect to &z, that is,

[a}g@, = {a: eW I (a:,a) S é@gg} and W/éag = {[a]g@ | ac W}
Define a relation <4 on W/&8% by
(Va,b € W) (lal sz 22 [blen < (a,b) € Z).
Then =g is a partial order on W/&g, and so (W/E%, <%) becomes a poset,
which is called a poset assigned to the quasi-ordered set (W, %). A relation #Z
on W is said to be compatible if (z — u,y — v} € Z whenever (z,y) € Z and

(w,v) € & for all z,y,u,v € W. A compatible equivalence relation on W is
called a congruence relation on W. The set

Olz = {z € W | (,0) € Z}
is called the kernel of Z.

Theorem 3.10. Let Zw be the induced quasi-ordering of a WS-algebra W
and let © = &g, be the equivalence relation induced by Zw. Then
(i) © is a congruence relation on W with kernel [0jo = {0}.
(ii) the quotient algebra (W/©,0,[0]o) is a WS-algebra, where the opera-
tion & on W/O is defined by

[ale © [ble = [a - ble.

Proof. (i) Note that © is an equivalence relation on W. Let z,y,u,v € W
be such that (r,y) € © and (u,v) € ©. Then (z,¥) € Zw, (y,z) € Zw,
(u,v) € Bw, and (v,u) € Zw. Using (i) and (ii) of Proposition 3.9, we obtain
(z -u,z—v) € Zw and (z — v,y — v) € #w. By the transitivity of Zw,
we get (z — u,y —v) € Zw. Similarly, we have (y — v,z — u) € Zw. Hence
(z — u,y — v) € O, that is, © is a congruence relation on W. Now if z € [0]e,
then {z,0) € © and so (0,z) € Zw. It follows from Proposition 3.8(ii) that
z = 0. Hence [0)e = {0}.

(ii) is straightforward. 0

Let W be a WS-algebra and ) # K C W. Denote by 0x the relation on W
given by
(Vz,yeW)((z,y) €0k ® z~yEK,y—z € K).
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Lemma 3.11. If 6k is reflexive for every nonempty subset K of a WS-algebra
W, then [0]px = K.

Proof. Suppose that 0 is reflexive for every nonempty subset K of W. Then
0=z—-—2x€ K. Ifac K,thena—-0=a€ Kand0—a =0 ¢ K. Hence
(a,0) € Ok, that is, a € [0]s,,. Conversely if a € [0]g,., then (a,0) € fx and
hence a = a — 0 € K. Therefore [0]s, = K. a

Lemma 3.12. Let K be a nonempty subset of a WS-algebra W. Assume that
the relation Ox is an equivalence relation on W. Then

a€K,a—beK and b—a=0 imply be K.

Proof. Suppose that a € K, a —~b& K andb—a =0. Thenb-a=0¢
[0]g,c = K, and s0 (a,b) € 0. Since Ok is an equivalence relation on W, g and
b belong to the same class of 8x. Hence a € K = [0]g,, implies b € [0]p, = K.
This completes the proof. O

We provide a method to construct a WS-algebra from a quasi-ordered set.

Theorem 3.13. Let (W, %) be a quasi-ordered set. Suppose 0 ¢ W and Wy =
W U {0}. Define a binary operation — on Wy as follows:

w—y:{ 0 if (z,y)€Z

x  otherwise.

Then (Wy, —,0) is a WS-algebra.

Proof. Since # is reflexive, obviously z —z = 0 for all z € W. Since {z,0) ¢ #

for every x € W, we have z — ( =z for all x € W. Note that 0 —z = 0 for all

z € W. Assume that (z,y) ¢ Z and (z,2) ¢ Z. Then
(g-—y)—z=z-—z=z=z-y=(x-2)-y.

If (z,y) € # and (x,z) ¢ %, then
(z-y)—2=0-z2=0=z-y=(z—2)—y.

Suppose that (z,y) ¢ Z and (z,2) € #. Then
(z-y)—2=2-2=0=0-y=(x—z)—y.

If (z,y) € Z and (z,2) € Z, then
(g-y)—2=0-2=0=0-y=(x—2)—v.

This proves the condition (b2) holds. To verify the condition (b3), we consider
the following cases:

1) (z,y) € Z and (y, 2
(2) (z,y) ¢ Z and (y, 2
(3) (z,y) € Z and (y,

VEZR
JEZ.

2) ¢ R.
(4) (z,y) ¢ Z and (y,2) ¢ Z
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For the case (1), we have (z, z) € %, and so
(x-y)—2=0-2=0=0-0=(z—2)— (y—2).

Case (2) implies that
(z—y)—z=z—2=(2-2)-0=(z—2)—(y—2).

For the case (3), we get first (z —y) —2=0—2=0.1If (z,2) € %, then

(z-2)-(y-2)=0-(y—-2)=0=(z—y) -3
if (z,2) ¢ Z, then
@—2)-(y-2)=c-y=0=(z—-y) -2

For the case (4), if (z,z) € Z, then
(x—-y)—z=2-2=0=0—-y=(z—2)—(y—2).

If (z,2) ¢ %, then
(x—-y)—z=z—z=c=z—-y=(2-2)—(y—2).

Hence the condition (b3) is valid. Therefore (Wy,—,0) is a WS-algebra. U
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