A KUROSH-AMITSUR LEFT JACOBSON RADICAL FOR RIGHT NEAR-RINGS

RAVI SRINIVASA RAO AND K. SIVA PRASAD

ABSTRACT. Let R be a right near-ring. An R-group of type-5/2 which is a natural generalization of an irreducible (ring) module is introduced in near-rings. An R-group of type-5/2 is an R-group of type-2 and an R-group of type-3 is an R-group of type-5/2. Using it $J_{5/2}$, the Jacobson radical of type-5/2, is introduced in near-rings and it is observed that $J_2(R) \subseteq J_{5/2}(R) \subseteq J_3(R)$. It is shown that $J_{5/2}$ is an ideal-hereditary Kurosh-Amitsur radical (KA-radical) in the class of all zero-symmetric near-rings. But $J_{5/2}$ is not a KA-radical in the class of all near-rings. By introducing an R-group of type-(5/2)(0) it is shown that $J_{(5/2)(0)}$, the corresponding Jacobson radical of type-(5/2)(0), is a KA-radical in the class of all near-rings which extends the radical $J_{5/2}$ of zero-symmetric near-rings to the class of all near-rings.

1. Introduction

Near-rings considered are right near-rings and R stands for a right near-ring. Many generalizations of the Jacobson radical of rings to near-rings were introduced and studied. Let $\nu \in \{0, 1, 2\}$. J_{ν} , the Jacobson radical of type- ν , was introduced and studied by Betsch [1] and J_3 , the Jacobson radical of type-3, was introduced and studied by Holcombe [2]. In this paper an R-group of type-5/2 is introduced as a natural generalization of an irreducible (ring) module. The corresponding Jacobson radical $J_{5/2}$ is also introduced in nearrings. Moreover, $J_2(R) \subseteq J_{5/2}(R) \subseteq J_3(R)$. $J_{5/2}$ is an ideal-hereditary Kurosh-Amitsur radical (KA-radical) in the class of all zero-symmetric near-rings. But $J_{5/2}$ is not a KA-radical in the class of all near-rings. By introducing an R-group of type-(5/2)(0) it is proved that $J_{(5/2)(0)}$, the corresponding Jacobson radical of type-(5/2)(0), is a KA-radical in the class of all near-rings which extends the radical $J_{5/2}$ of zero-symmetric near-rings to the class of all near-rings.

We recall some of the definitions related to R-groups and Jacobson radicals of near-rings.

Let G be an R-group and R_0 be the zero-symmetric part of R. Then G is

Received April 27, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 16Y30.

Key words and phrases. near-ring, R-groups of type-5/2 and (5/2)(0), Jacobson radicals of type-5/2 and (5/2)(0).

- (i) monogenic if there is a $g \in G$ such that Rg = G.
- (ii) strongly monogenic if G is monogenic and for each $g \in G$ either Rg = 0 or G.
- (iii) an R-group of type-0 if $G \neq 0$ and is a monogenic simple R-group.
- (iv) an R-group of type-1 if G is of type-0 and strongly monogenic.
- (v) an R-group of type-2 if $G \neq 0$, monogenic and R_0 -simple.
- (vi) an R-group of type-3 if G is an R-group of type-2 and $x, y \in G$ and rx = ry for all $r \in R$ implies x = y.

If I is an ideal of R, then it is denoted by $I \triangleleft R$.

Let Q be a mapping which assigns to each near-ring R an ideal Q(R) of R. Such mappings are called ideal-mappings. We consider the following properties which Q may satisfy:

- (H1) $h(Q(R)) \subseteq Q(h(R))$ for all homomorphisms h of R;
- (H2) $Q(R/Q(R)) = \{0\}$ for all R;
 - Q is r-hereditary if $I \cap Q(R) \subseteq Q(I)$ for all ideal I of R;
 - Q is s-hereditary if $Q(I) \subseteq I \cap Q(R)$ for all ideals I of R;
 - Q is ideal-hereditary if it is both r-hereditary and s-hereditary, that is, if $Q(I) = I \cap Q(R)$ for all ideals I of R;
 - Q is idempotent if Q(Q(R)) = Q(R) for all R;
 - Q is complete if Q(I) = I and I is an ideal of R implies $I \subseteq Q(R)$.

With Q we associate two classes of near-rings \mathbb{R}_Q and \mathbb{S}_Q defined by $\mathbb{R}_Q := \{R \mid Q(R) = R\}$, $\mathbb{S}_Q := \{R \mid Q(R) = 0\}$ and are called Q-radical class and \cdot Q-semisimple class respectively.

- An ideal-mapping Q is a Hoehnke radical (H-radical) if it satisfies conditions (H1) and (H2).
- An ideal-mapping Q is a Kurosh-Amitsur radical (KA-radical) if it is a complete idempotent H-radical.

Let \mathbb{M} be a class of near-ring. Classes of near-rings always assumed to be abstract, that is, they contains the one element near-ring and are closed under isomorphic copies. With every near-ring R, we associate two ideals of R, depending on \mathbb{M} . These ideals are defined by:

$$\mathbb{M}(R) := \Sigma \{ I \mid I \text{ is an ideal of } R \text{ and } I \in \mathbb{M} \}$$
 and $(R)\mathbb{M} := \cap \{ I \mid I \text{ is an ideal of } R \text{ and } R/I \in \mathbb{M} \}.$

 \mathbb{M} is called regular if $0 \neq I \triangleleft R \in \mathbb{M}$ implies that $0 \neq I/K \in \mathbb{M}$ for some $K \triangleleft I$; hereditary if $I \triangleleft R \in \mathbb{M}$ implies $I \in \mathbb{M}$ and; c-hereditary if I is a left invariant ideal of $R \in \mathbb{M}$, then $I \in \mathbb{M}$. (An ideal I of R is left invariant if $RI \subseteq I$.)

A class of near-rings M is a Kurosh-Amitsur radical class (KA-radical class) if it satisfies the following:

- (R1) M is closed under homomorphic images;
- (R2) $\mathbb{M}(R) \in \mathbb{M}$ for all near-rings R;
- (R3) $\mathbb{M}(R/\mathbb{M}(R)) = \{0\}$ for all near-rings R.

With a KA-radical class \mathbb{R} we associate its semisimple class $\mathcal{S}\mathbb{R} := \{R \mid \mathbb{R}(R) = \{0\}\}.$

The following properties for a KA-radical class \mathbb{R} are well known.

- (i) \mathbb{R} is hereditary if and only if $\mathbb{R}(R) \cap I \subset \mathbb{R}(I)$ for all $I \triangleleft R$.
- (ii) $S\mathbb{R}$ is hereditary if and only if $\mathbb{R}(I) \subseteq \mathbb{R}(R) \cap I$ for all $I \triangleleft R$.
- (iii) \mathbb{R} is c-hereditary if and only if $\mathbb{R}(R) \cap I \subseteq \mathbb{R}(I)$ for all left invariant ideals I of R.

We say that a class M of near-rings satisfy condition (F_l) if $K \triangleleft I$ and I is a left invariant ideal of R with $I/K \in M$, then $K \triangleleft R$.

Theorem 1.1 (Corollary 2.3 of [5]). Let \mathbb{M} be a class of zero-symmetric nearrings and \mathcal{L} be defined by $\mathcal{L}(R) := (R)\mathbb{M}$ and \mathcal{L}_{\circ} be the restriction of \mathcal{L} to the class of all zero-symmetric near-rings. Then the following are equivalent.

- (1) \mathcal{L} is a KA-radical in the class of all near-rings with $\mathcal{L}(I) \subseteq \mathcal{L} \cap I$ for all $I \triangleleft R$ and equality holds if I is left invariant.
- (2) \mathcal{L}_{\circ} is an ideal-hereditary KA-radical in the class of all zero-symmetric near-rings and M satisfies condition (*):
- (*) If $K \triangleleft I \triangleleft R$ with I a left invariant ideal of R and $I/K \in \mathbb{M}$, then $\overline{R_c} \subseteq K$, where $\overline{R_c}$ is the ideal of R generated by the subnear-ring R_c .

Theorem 1.2 (Theorem 4.2.3 of [5]). The class of all zero-symmetric 2-primitive near-rings satisfy condition (F_l) .

2. R-groups of type-5/2

Throughout this section R stands for a right near-ring.

Definition 2.1. Let G be an R-group. Then G is called an R-group of type-5/2 if G is an R-group of type-2 and Rq = G for all $0 \neq q \in G$.

Remark 2.2. From the definition we have that an R-group of type-5/2 is an R-group of type-2.

Proposition 2.3. An R-group of type-3 is an R-group of type-5/2.

Proof. Let G be an R-group of type-3. So, G is an R-group of type-2. Let $0 \neq g \in G$. Since G is an R-group of type-2, it is an R-group of type-1. So, either Rg = G or $Rg = \{0\}$. Suppose that Rg = 0. Now $R0 = R_c0 = R_c$ $g \subseteq Rg = 0$ and hence $R0 = \{0\}$. So, rg = r0 for all $r \in R$. Since G is an R-group of type-3, g = 0. This is a contradiction to the fact that $g \neq 0$. Therefore, Rg = G.

Proposition 2.4. Let R be a zero-symmetric near-ring and $\{0\} \neq G$ be an R-group. Then G is an R-group of type-5/2 if and only if Rg = G for all $0 \neq g \in G$.

Proof. If G is an R-group of type-5/2, then obviously Rg = G for all $0 \neq g \in G$. Suppose that Rg = G for all $0 \neq g \in G$. Let $\{0\} \neq H$ be an R-subgroup of G. Let $0 \neq h \in H$. Now $G = Rh \subseteq H$ and hence H = G. Therefore, G is an R-group of type-2 and hence it is an R-group of type-5/2.

We present an example of an R-group of type-5/2 which is not an R-group of type-3.

Example 2.5. Let (R,+) be a group of order ≥ 3 . Let $a,b \in R$. Define ab=a if $b \neq 0$ and ab=0 if b=0. Now R is a zero-symmetric near-ring. Moreover, Ra=R for all $0 \neq a \in R$. Therefore, by Proposition 2.4, R is an R-group of type-5/2. Let $0 \neq b$, $0 \neq c \in R$ and $b \neq c$. Now ab=a=ac for all $a \in R$. So, R is not an R-group of type-3.

Now we give an example of an R-group of type-2 which is not an R-group of type-5/2.

Example 2.6. Let (R, +) be a group of order ≥ 3 . Let S be a non-empty subset of $R \setminus \{0\}$ such that $R \setminus S$ contains no non-zero subgroup of (R, +). Let $a, b \in R$. Define ab = a if $b \in S$ and ab = 0 if $b \notin S$. Now R is a zero-symmetric near-ring. We have that $Rb = \{0\}$ if $b \notin S$ and Rb = R if $b \in S$. Now it is clear that R is an R-group of type-2. But, by Proposition 2.4, R is not an R-group of type-5/2.

Definition 2.7. A modular left ideal L of R is said to be a 5/2-modular left ideal of R if R/L is an R-group of type-5/2.

Proposition 2.8. Let G be an R-group of type-5/2 and $0 \neq g \in G$. Then (0:g) is a 5/2-modular left ideal of R and R/(0:g) and G are isomorphic R-groups.

Proof. The mapping $h: R \to G$ defined by h(r) = rg is an R-homomorphism of R onto G with Ker h = (0:g) which is a modular left ideal of R. Now R/(0:g) is isomorphic to G as R-groups. So, (0:g) is a 5/2-modular left ideal of R.

Definition 2.9. R is called a 5/2-primitive near-ring if R has a faithful R-group of type-5/2.

Definition 2.10. An ideal I of R is called a 5/2-primitive ideal of R if R/I is a 5/2-primitive near-ring.

One can easily verify the following.

Proposition 2.11. Let I be an ideal of R. Then

- (1) If G is an R-group of type-5/2 and $I \subseteq (0:G)$, then G is also an R/I-group of type-5/2, where (r+I)g := rg, $r+I \in R/I$ and $g \in G$. If in addition I = (0:G), then G is a faithful R/I-group.
- (2) If G is an R/I group of type-5/2, then G is also an R-group of type-5/2, where rg := (r+I)g, $r \in R$ and $g \in G$. If in addition G is a faithful R/I-group, then $I = (0:G)_R$.

An immediate consequence of Propositions 2.8 and 2.11 is the following.

Proposition 2.12. Let I be an ideal of R. Then the following are equivalent.

- (i) I is a 5/2-primitive ideal of R.
- (ii) I = (0:G) for some R-group G of type-5/2.
- (iii) I = (L : R) for some 5/2-modular left ideal L of R.

Corollary 2.13. The following are equivalent

- (i) $\{0\}$ is a 5/2-primitive ideal of R.
- (ii) R is 5/2-primitive.
- (iii) R has a 5/2-modular left ideal L such that $(L:R) = \{0\}$.

We know that an ideal P of R is a 3-prime ideal of R if $a, b \in R$ and $aRb \subseteq P$ implies $a \in P$ or $b \in P$.

Proposition 2.14. Let P be a 5/2-primitive ideal of R. Then P is a 3-prime ideal of R.

Proof. Let P be a 5/2-primitive ideal of R. We get an R-group G such that P=(0:G). Let $a,b\in R$ and $aRb\subseteq P=(0:G)$. Suppose that $b\not\in P$. Now $bg\neq 0$ for some $g\in G$. So R(bg)=G as G is an R-group of type-5/2. Therefore, $aG=aR(bg)=(aRb)g=\{0\}$. So $a\in (0:G)=P$. Hence P is 3-prime.

We know that a 3-primitive ideal of a zero-symmetric near-ring is equiprime and 3-prime. So with the introduction of 5/2-primitive ideals, we have primitive ideals which are 3-prime but not equiprime.

3. The Jacobson radical of type-5/2

Definition 3.1. The Jacobson radical of R of type-5/2, denoted by $J_{5/2}(R)$, is defined as the intersection of all 5/2-primitive ideals of R and if R has no such ideals, then $J_{5/2}(R)$ is defined as R.

Remark 3.2. By Proposition 2.12, $J_{5/2}(R) = \bigcap \{(0:G) \mid G \text{ is an } R\text{-group of type-}5/2\} = \bigcap \{(L:R) \mid L \text{ is a } 5/2\text{-modular left ideal of } R\}.$

The following proposition is immediate.

Proposition 3.3. $J_{5/2}(R) = \bigcap \{P \mid R/P \text{ is a } 5/2\text{-primitive near-ring}\}.$

Proposition 3.4. $J_{5/2}(R) = \bigcap \{L \mid L \text{ is a } 5/2\text{-modular left ideal of } R\}.$

Proof. If R has no 5/2-primitive ideals, then by Proposition 2.12, R has no 5/2-modular left ideals. So, if $J_{5/2}(R) = R$, then the result follows. Now suppose that R has a 5/2-primitive ideal. So there is an R-group of type-5/2. We have $J_{5/2}(R) = \cap \{(0:G) \mid G \text{ is an } R\text{-group of type-5/2}\}$. Let G be an R-group of type-5/2. Let $0 \neq g \in G$. Since Rg = G, we get that $r \to rg$ is an R-homomorphism of R onto G with Kernel (0:g). So R/(0:g) and G are isomorphic R-groups and hence (0:g) is a 5/2-modular left ideal of R. Therefore (0:G) is an intersection of 5/2-modular left ideals of R. This shows that $J_{5/2}(R)$ is an intersection of 5/2-modular left ideals of R. Let T be a 5/2-modular left ideal of R. Now R/T is an R-group of type-5/2. Since T is modular, by Corollary 3.24 of [3], we get that $(T:R) \subseteq T$. So $J_{5/2}(R) \subseteq (T:R) \subseteq T$. Hence $J_{5/2}(R)$ is the intersection of all 5/2-modular left ideals of R.

Lemma 3.5. Let R be a zero-symmetric near-ring and S be an invariant subnearring of R. If L is a 5/2-modular left ideal of S, then L is an ideal of the R-group S and S/L is an R-group of type-5/2.

Proof. Let L be a 5/2-modular left ideal of S. Since an R-group of type-5/2 is an R-group of type-2, L is a 2-modular left ideal of S. Therefore, by Theorem 3.34 of [3], L is an ideal of the R-group S and S/L is an R-group of type-2. Let $0 \neq s + L \in S/L$. Since S/L is an S-group of type-5/2, S(s + L) = S/L. Therefore $S/L = S(s + L) \subseteq R(s + L) \subseteq S/L$. So R(s + L) = S/L and hence S/L is an R-group of type-5/2.

Theorem 3.6. Let S be an invariant subnear-ring of a zero-symmetric near-ring R. Then $J_{5/2}(S) \subseteq J_{5/2}(R) \cap S$.

Proof. If S has no 5/2-primitive ideals then $J_{5/2}(S) = S \subseteq J_{5/2}(R) \cap S$. So, suppose that S has 5/2-primitive ideals. Let P be a 5/2-primitive ideal of S. We get an S-group G of type-5/2 such that $P = (0:G)_S$. Let $0 \neq g \in G$. Now $S/(0:g)_S$ and G are isomorphic as S-groups and that $L := (0:g)_S$ is a 5/2-modular left ideal of S and $P = (0:G)_S = (0:S/L)_S = (L:S)_S$. By Lemma 3.5, S/L is an R-group of type-5/2. So $Q := (0:S/L)_R = (L:S)_R$ is a 5/2-primitive ideal of R. Therefore $P = (L:S)_S = (L:S)_R \cap S = Q \cap S$. Hence $J_{5/2}(S) \subseteq J_{5/2}(R) \cap S$. □

Lemma 3.7. Let S be an invariant subnear-ring of a zero-symmetric near-ring R. Let L be a 5/2-modular left ideal of R and $S \not\subseteq L$. Then $L \cap S$ is a 5/2-modular left ideal of S.

Proof. We have that L is a 5/2-modular left ideal of R and $S \nsubseteq L$. Now R = S + L. So $R/L = (S + L)/L \simeq_R S/(S \cap L)$ and that $S/(S \cap L)$ is an R-group of type-5/2. Let L be modular by e. Now $r - re \in L$ for all $r \in R$. Let $s \in S - (S \cap L)$. Since $0 \neq s + L \in R/L$, R(s + L) = R/L and that Rs + L = R.

Now e = rs + l, $r \in R$, $l \in L$. $S \cap L$ is a left ideal of S modular by rs. Let $t \in S$. Now $te - t \in L$. So $te - t = t(rs + l) - t = (t(rs + l) - t(rs)) + (t(rs) - t) \in L$ and that $t(rs) - t \in L \cap S$. Therefore $t + (L \cap S) = t(rs) + (L \cap S) \in (Ss + L \cap S)/(L \cap S)$ and that $S/(L \cap S) = (Ss + L \cap S)/(L \cap S) = S(s + (L \cap S))$. Hence $S/(L \cap S)$ is an S-group of type-5/2. Since $L \cap S$ is a modular left ideal of S, $L \cap S$ is a 5/2-modular left ideal of S.

Theorem 3.8. Let R be a zero-symmetric near-ring and S be an invariant subnearring of R. Then $J_{5/2}(S) \subseteq J_{5/2}(R) \cap S$.

Proof. If $J_{5/2}(R) = R$, then $J_{5/2}(S) \subseteq R \cap S = J_{5/2}(R) \cap S$. Suppose that $J_{5/2}(R) \neq R$. So R has 5/2-modular left ideals. Let L be a 5/2-modular left ideal of R. If $S \subseteq L$, then $J_{5/2}(S) \subseteq S \cap L$. Now suppose that $S \not\subseteq L$. By Lemma 3.7, $S \cap L$ is a 5/2-modular left ideal of S. So $J_{5/2}(S) \subseteq S \cap L$. Therefore, by Proposition 3.4, $J_{5/2}(S) \subseteq J_{5/2}(R) \cap S$. □

Theorem 3.9. Let R be a zero-symmetric near-ring and S be an invariant subnearring of R. Then $J_{5/2}(S) = J_{5/2}(R) \cap S$.

Theorem 3.10. $J_{5/2}$ is an ideal-hereditary Kurosh-Amitsur radical in the class of all zero-symmetric near-rings.

We show now that $J_{5/2}$ is not a KA-radical in the class of all near-rings.

Consider the dihedral group $D_8 = \{0, a, 2a, 3a, b, a+b, 2a+b, 3a+b\}$. Let T be the near-ring given in Example 11 of [3], (p.418) whose additive group is D_8 . As mentioned in [4], $\{0\}$, $J = \{0, a, 2a, 3a\}$ and T are the ideals of T. Moreover, these are the only left ideals of T. Now T/J is the constant near-ring on Z_2 . Since T/J is a T-group of type-5/2, J is a 5/2-primitive ideal and is the only 5/2-primitive ideal of T. So $J_{5/2}(T) = J$.

We need the following result.

Proposition 3.11 (Proposition 3.3 of [4]). Let Q be an ideal-mapping which satisfies (H1) and for which Q(T) = J and $F \in S_Q$, where F is the field of order 2. Then Q is not idempotent and hence not a KA-radical mapping.

Theorem 3.12. $J_{5/2}$ is not a KA-radical in the class of all near-rings.

Proof. By Proposition 3.3, we have that $J_{5/2}$ is the H-radical corresponding to the class of all 5/2-primitive near-rings. As seen above $J_{5/2}(T) = J$. Moreover, the two element field is in $\mathcal{S}_{J_{5/2}}$. So, by Proposition 3.11, $J_{5/2}$ is not a KA-radical in the class of all near-rings.

4. The Jacobson radical of type-(5/2)(0)

It is known that Jacobson radicals of type-2 and 3 are ideal-hereditary KA-radicals in the class of all zero-symmetric near-rings and the Jacobson radical of type-2 is not even a KA-radical in the class of all near-rings. S. Veldsman [5] introduced R-groups of type-2(0) and 3(0) and the corresponding Jacobson

radicals of type-2(0) and 3(0) which are extensions of the Jacobson radicals of type-2 and 3 respectively of zero-symmetric near-rings to the class of all near-rings and has shown that these two new radicals are KA-radicals in the class of all near-rings.

In this section we introduce R-groups of type-(5/2)(0) and the corresponding Jacobson radical of type-(5/2)(0). We show that it is a KA-radical in the class of all near-rings.

Definition 4.1. Let G be an R-group of type-5/2. G is called an R-group of type-(5/2)(0) if $R0 = \{0\}$, where 0 is the additive identity in G.

Proposition 4.2. Let G be an R-group of type-5/2. Then G is an R-group of type-(5/2)(0) if and only if $R_c \subseteq (0:G)$, where R_c is the constant part of R.

Proof. Let G be an R-group of type-(5/2)(0). $R_cg = (Ro)g = R(og) = R0 = \{0\}$ for all $g \in R$. So, $R_c \subseteq (0:G)$. Suppose now that $R_c \subseteq (0:G)$. Now $R_c0 = \{0\}$, where 0 is the additive identity in G. So $R0 = \{0\}$ and hence G is an R-group of type-(5/2)(0).

Corollary 4.3. Let R is a zero-symmetric near-ring and G be an R-group. Then G is type-(5/2)(0) if and only if it is of type-5/2.

Definition 4.4. A near-ring R is said to be (5/2)(0)-primitive if it has a faithful R-group of type-(5/2)(0). An ideal I of R is called (5/2)(0)-primitive if R/I is a (5/2)(0)-primitive near-ring.

Proposition 4.5. Let I be an ideal of R. Then the following are equivalent.

- (i) I is (5/2)(0)-primitive ideal of R.
- (ii) I = (0:G) for some R-group G of type-(5/2)(0).

Proof. Suppose that I is a (5/2)(0)-primitive ideal of R. R/I is a (5/2)(0)-primitive on some R/I-group G of type-(5/2)(0). Since G is a faithful R/I-group of type-(5/2)(0), G is an R-group of type-(5/2)(0). Also, since R/I is zero-symmetric, $R_c \subseteq I = (0:G)$ and hence G is an R-group of type-(5/2)(0). Conversely, suppose that I = (0:G) for an R-group G of type-(5/2)(0). Since G is an R-group of type-(5/2)(0) and I = (0:G), G is a faithful R/I-group of type-(5/2)(0). So R/I is a (5/2)(0)-primitive near-ring and hence G is a faithful R/I-group of type-(5/2)(0). So R/I is a (5/2)(0)-primitive near-ring and hence I is a (5/2)(0)-primitive ideal of I.

Corollary 4.6. The following are equivalent

- (i) $\{0\}$ is a (5/2)(0)-primitive ideal of R.
- (ii) R is (5/2)(0)-primitive.

Corollary 4.7. R is (5/2)(0)-primitive if and only if R is a zero-symmetric and (5/2)-primitive.

Remark 4.8. It is clear that a (5/2)(0)-primitive ideal of R contains R_c , the constat part of R.

Definition 4.9. Let R be a near-ring. $J_{(5/2)(0)}(R)$ is defined as the intersection of all (5/2)(0)-primitive ideal of R and $J_{(5/2)(0)}(R) = R$ if R has no (5/2)(0)-primitive ideals. $J_{(5/2)(0)}$ is called the *Jacobson radical of type*-(5/2)(0).

Remark 4.10. If R is a ring, then $J_{(5/2)(0)}(R)$ is the Jacobson radical of R.

We show now that $J_{(5/2)(0)}$ is a KA-radical in the class of all near-rings, its semisimple class is hereditary and radical class is c-hereditary.

Theorem 4.11. The class of all zero-symmetric 5/2-primitive near-rings satisfy condition (F_l) .

Proof. Since a zero-symmetric 5/2-primitive near-ring is a 2-primitive near-ring, by Theorem 1.2, we get that the class of all zero-symmetric 5/2-primitive near-rings also satisfy condition (F_l) .

Theorem 4.12. Let R be a near-ring. $J_{(5/2)(0)}$ is a KA-radical in the class of all near-rings, $J_{(5/2)(0)}(I) \subseteq J_{(5/2)(0)}(R) \cap I$ for all $I \triangleleft R$ and the equality holds if I is a left invariant ideal.

Proof. Let M be the class of all zero-symmetric 5/2-primitive near-rings. Now by Corollary 4.7, $J_{(5/2)(0)}(R) = (R)M$ for all near-rings R. By Theorem 3.10, $J_{5/2}$ is an ideal-hereditary KA-radical in the class of all zero-symmetric nearrings. In view of Theorem 1.1, it is enough to show that M satisfies condition (*) of Theorem 1.1. Let $K \triangleleft I \triangleleft R$ and I be a left invariant ideal of R with $I/K \in M$. By Theorem 4.11, M satisfies condition (F_l) . So $K \triangleleft R$. Since I is a left invariant ideal of I, I is a zero-symmetric near-ring, I is a zero-symmetric near-ring.

References

- G. Betsch, Struktursätze für Fastringe, Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard-Karls-Universität zu Tübingen Paul Jllg, Photo-Offsetdruck, Stuttgart 1963.
- [2] M. Holcombe, A hereditary radical for near-rings, Studia Sci. Math. Hungar. 17 (1982), no. 1-4, 453-456.
- [3] G. Pilz, Near-Rings: The Theory and Its Applications, Second edition. North-Holland Mathematics Studies, 23. North-Holland Publishing Co., Amsterdam, 1983.
- [4] S. Veldsman, On the nonhereditariness of radical and semisimple classes of near-rings, Studia Sci. Math. Hungar. 24 (1989), no. 2-3, 315-323.
- [5] ______, Modulo-constant ideal-hereditary radicals of near-rings, Quaestiones Math. 11 (1988), no. 3, 253-278.

RAVI SRINIVASA RAO
DEPARTMENT OF MATHEMATICS
P. G. CENTRE
P. B. SIDDHARTHA COLLEGE OF ARTS AND SCIENCE
VIJAYAWADA-520010, ANDHRA PRADESH, INDIA
E-mail address: dr_rsrao@yahoo.com

K. SIVA PRASAD
DEPARTMENT OF MATHEMATICS
CHALAPATHI INSTITUTE OF ENGINEERING AND TECHNOLOGY
CHALAPATHI NAGAR, LAM
GUNTUR-522034, ANDHRA PRADESH, INDIA