Bull. Korean Math. Soc. 45 (2008), No. 3, pp. 457-466

A KUROSH-AMITSUR LEFT JACOBSON RADICAL FOR
RIGHT NEAR-RINGS

RAvi SRINTvASA RAO AND K. Siva PRASAD

ABsTRACT. Let R be a right near-ring. An R-group of type-5/2 which
is a natural generalization of an irreducible (ring) module is introduced
in near-rings. An R-group of type-5/2 is an R-group of type-2 and an
R-group of type-3 is an R-group of type-5/2. Using it Jg /2> the Jacobson
radical of type-5/2, is introduced in near-rings and it is observed that
J2(R) C Js/2(R) € J3(R). It is shown that Js/9 is an ideal-hereditary
Kurosh-Amitsur radical {KA-radical) in the class of all zero-symmetric
near-rings. But Js/o is not a KA-radical in the class of all near-rings. By
introducing an R-group of type-(5/2){0) it is shown that J(5/9)(q), the
corresponding Jacobson radical of type-(5/2)(0}, is a KA-radical in the
class of all near-rings which extends the radical J5,5 of zero-symmetric
near-rings to the class of all near-rings.

1. Introduction

Near-rings considered are right near-rings and R stands for a right near-
ring. Many generalizations of the Jacobson radical of rings to near-rings were
introduced and studied. Let v € {0, 1, 2}. J,, the Jacobson radical of type-
v, was introduced and studied by Betsch [1] and Js, the Jacobson radical of
type-3, was introduced and studied by Holcombe [2]. In this paper an R-group
of type-5/2 is introduced as a natural generalization of an irreducible (ring)
module. The corresponding Jacobson radical Js/» is also introduced in near-
rings. Moreover, J2(R) C J;5,2(R) C J3(R). J5/2 is an ideal-hereditary Kurosh-
Amitsur radical (KA-radical) in the class of all zero-symmetric near-rings. But
Js5/2 is not a KA-radical in the class of all near-rings. By introducing an R-group
of type-(5/2)(0) it is proved that Js/2y(0), the corresponding Jacobson radical
of type-(5/2)(0), is a KA-radical in the class of all near-rings which extends
the radical J5,, of zero-symmetric near-rings to the class of all near-rings.

We recall some of the definitions related to R-groups and Jacobson radicals
of near-rings.

Let G be an E-group and Ry be the zero-symmetric part of R. Then G is
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(i) monogenic if there is a ¢ € G such that Rg = G.

{ii) strongly monogenic if G is monogenic and for each g € G either Rg =0
or G.

(iii) an R-group of type-0 if G # 0 and is a monogenic simple R-group.

(iv) an R-group of type-1 if G is of type-0 and strongly monogenic.

{v) an R-group of type-2 if G # 0, monogenic and Ry-simple.

(vi) an R-group of type-3 if G is an R-group of type-2 and z,y € G and
rz =ry for all r € R implies z = y.

If [ is an ideal of R, then it is denoted by I < R.

Let Q be a mapping which assigns to each near-ring R an ideal Q(R) of R.
Such mappings are called ideal-mappings. We consider the following properties
which ¢ may satisfy:

(H1) R{Q(R)) C Q(h(R)) for all homomorphisms k of R;

(H2) Q(R/Q(R)) = {0} for all ;

Q is r-hereditary if I N Q(R) C Q(I) for all ideal I of R;

Q is s-hereditary if Q(I) C I N Q(R) for all ideals I of R;

Q@ is ideal-hereditary if it is both r-hereditary and s-hereditary, that is, if
Q(I) =1n Q(R) for all ideals I of R;

@ is idempotent if Q(Q(R)) = Q(R) for all R;

Q is complete if Q(I) = I and I is an ideal of R implies I € Q(R).

With () we associate two classes of near-rings Rg and Sg defined by Rg =
{R| Q(R) = R}, Sqg = {R | Q(R) = 0} and are called Q-radical class and

« (Q-semisimple class respectively.

e An ideal-mapping @ is a Hoehnke radical (H-radical) if it satisfies con-
ditions (H1) and (H2).

o An ideal-mapping Q is a Kurosh-Amitsur radical (KA-radical) if it is
a complete idempotent H-radical.

Let M be a class of near-ring. Classes of near-rings always assumed to
be abstract, that is, they contains the one element near-ring and are closed
under isomorphic copies. With every near-ring R, we associate two ideals of
R, depending on M. These ideals are defined by:

M(R) :=X{I | I is an ideal of R and I € M} and
(RYM :=nN{I| I is an ideal of R and R/I € M}.
M is called regular if 0 #£ I < R € M implies that 0 #£ I/K € M for some K
< I; hereditary if I <« R € M implies I € M and; c-hereditary if I is a left
invariant ideal of R € M, then / € M. (An ideal I of R is left invariant if RI
c1)

A class of near-rings M is a Kurosh-Amitsur radical class (KA-radical class)
if it satisfies the following:

(R1) M is closed under homomorphic images;

(R2) M(R) € M for all near-rings R;

(R3) M(R/M(R)) = {0} for all near-rings R.
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With a KA-radical class R we associate its semisimple class SR := {R | R(R) =
{0}}
The following properties for a KA-radical class R are well known.
(i) Ris hereditary if and only if R(R) N I C R(I) for all I < R.
(ii) SR is hereditary if and only if R(I) CR(R) N [ for all I < R.
(ili) R is c-hereditary if and only if R(R) N I € R(I) for all left invariant
ideals I of R.
We say that a class M of near-rings satisfy condition (F;) if K < I and [ is a
left invariant ideal of R with I/K € M, then K < R.

Theorem 1.1 (Corollary 2.3 of [5]). Let M be a class of zero-symmetric near-
rings and L be defined by L(R) := (R)M and L, be the restriction of L to the
class of all zero-symmetric near-rings. Then the following are equivalent.

(1) £ is a KA-radical in the class of all near-rings with L(I} C L N I for
all I < R and equality holds if I is left invariant.

(2) Lo is an ideal-hereditary KA-radical in the class of all zero-symmetric
near-rings and M satisfies condition () :

(x) If K < I < R with I a left invariant ideal of R and I/K € M, then
R. C K, where R, is the ideal of R generated by the subnear-ring R..

Theorem 1.2 (Theorem 4.2.3 of [5]). The class of all zero-symmetric 2-
primitive near-rings satisfy condition (Fy).

2. R-groups of type-5/2
Throughout this section R stands for a right near-ring.

Definition 2.1. Let G be an R-group. Then G is called an R-group of type-5/2
if G is an R-group of type-2 and Rg =G for all 0 # g € G.

Remark 2.2. From the definition we have that an R-group of type-5/2 is an
R-group of type-2.

Proposition 2.3. An R-group of type-3 is an R-group of type-5/2.

Proof. Let G be an R-group of type-3. So, G is an R-group of type-2. Let 0
# g € G. Since G is an R-group of type-2, it is an R-group of type-1. So,
either Rg = G or Rg = {0}. Suppose that Rg = 0. Now R0 = R.0 =R, g C
Rg = 0 and hence R0 = {G}. So, rg =70 for all r € R. Since G is an R-group
of type-3, ¢ = 0. This is a contradiction to the fact that g # 0. Therefore,
Rg=0G. 0

Proposition 2.4. Let R be a zero-symmetric near-ring and {0} # G be an
R-group. Then G is an R-group of type-5/2 if and only +f Rg = G for all 0 #
g € G.
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Proof. If G is an R-group of type-5/2, then obviously Rg = G for all 0 # g €
G. Suppose that Rg = G for all 0 # g € G. Let {0} # H be an R-subgroup of
G. Let 0 # h € H. Now G = Rh C H and hence H = G. Therefore, G is an
R-group of type-2 and hence it is an R-group of type-5/2. a

We present an example of an R-group of type-5/2 which is not an R-group
of type-3.

Example 2.5. Let (R,+) be a group of order > 3. Let a,b € R. Define
ab=aifb# 0and ab=0if & = 0. Now R is a zero-symmetric near-ring.
Moreover, Ra = R for all 0 # a € R. Therefore, by Proposition 2.4, R is an
R-group of type-5/2. Let 0 £ b, 0 # ¢ € R and b # ¢. Now ab = a = ac for all
¢ € R. So, R is not an R-group of type-3.

Now we give an example of an R-group of type-2 which is not an R-group
of type-5/2.

Example 2.6. Let (R,+) be a group of order > 3. Let S be a non-empty
subset of R \ {0} such that R\ S contains no non-zero subgroup of (R, +). Let
a,b€ R. Defineab=a ifbe Sandab=0ib € S. Now R is a zero-symmetric
near-ring. We have that Rb= {0} ifb ¢ S and Rb= R if b € S. Now it is clear
that R is an R-group of type-2. But, by Proposition 2.4, R is not an R-group
of type-5/2.

Definition 2.7. A modular left ideal L of R is said to be a 5/2-modular left
ideal of R if R/L is an R-group of type-5/2.

Proposition 2.8. Let G be an R-group of type-5/2 and 0 # g € G. Then
(0 : g) is a 5/2-modular left ideal of R and R/(0 : g) and G are isomorphic
R-groups.

Progf. The mapping h : R — G defined by h(r) = rg is an R-homomorphism
of R onto G with Ker h = (0 : g) which is a modular left ideal of R. Now
R/(G: g) is isomorphic to G as R-groups. So, (0 : g) is a 5/2-modular left ideal
of K. O

Definition 2.9. R is called a 5/2-primitive near-ring if R has a faithful R-
group of type-5/2.
Definition 2.10. An ideal I of R is called a 5/2-primitive ideal of Rif R/I is
a 5/2-primitive near-ring.

One can easily verify the following.
Proposition 2.11. Let I be an ideal of R. Then
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(1) If G is an R-group of type-5/2 and I C (0 : G), then G is also an
R/I-group of type-5/2, where (r+I)g:=rg, r +1 € R/Tand g € G.
If in addition I = (0 : G), then G is a faithful R/I-group.

(2) If G is an R/I group of type-5/2, then G is also an R-group of type-
5/2, where rg := (r+1I)g, r € R and g € G. If in addition G is a
faithful R/I-group, then I = (0: G)g.

An immediate consequence of Propositions 2.8 and 2.11 is the following.
Proposition 2.12. Let I be an ideal of R. Then the following are equivalent.

(1) I is a 5/2-primitive ideal of R.

(ii) I = (0: G) for some R-group G of type-5/2.

(i) I = (L : R) for some 5/2-modular left ideal L of R.

Corollary 2.13. The following are equivalent
(i) {0} is a 5/2-primitive ideal of R.
(ii) R is 5/2-primitive.
(iii) R has a 5/2-modular left ideal L such that (L : R) = {0}.

We know that an ideal P of R is a 3-prime ideal of R if a,b € R and aRb C
P impliesa € Porb € P.
Proposition 2.14. Let P be a 5/2-primitive ideal of R. Then P is a 3-prime
ideal of R.

Proof. Let P be a 5/2-primitive ideal of R. We get an R-group G such that
P=(0:G). Letabe Rand aRb C P = (0: G). Suppose that b & P.
Now bg # 0 for some g € G. So R(bg) = G as G is an R-group of type-5/2.
Therefore, aG = aR(bg) = (aRb)g = {0}. Soa € (0: G) = P. Hence P is
3-prime. O

We know that a 3-primitive ideal of a zero-symmetric near-ring is equiprime
and 3-prime. So with the introduction of 5/2-primitive ideals, we have primitive
ideals which are 3-prime but not equiprime.

3. The Jacobson radical of type-5/2

Definition 3.1. The Jacobson radical of R of type-5/2, denoted by Js/2(R),
is defined as the intersection of all 5/2-primitive ideals of R and if R has no
such ideals, then J5/5(R) is defined as R.

Remark 3.2. By Proposition 2.12, J5/o(R) = N {(0: G) | G is an R-group of
type-b/2} = N {(L: R) | L is a 5/2-modular left ideal of R}.

The following proposition is immediate.
Proposition 3.3. Js/2(R) =N {P | R/P is a 5/2-primitive near-ring}.

Proposition 3.4. Js/2(R) =N {L | L is a 5/2-modular left ideal of R}.
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Proof. If R has no 5/2-primitive ideals, then by Proposition 2.12, R has no
5/2-modular left ideals. So, if J5/2(R) = R, then the result follows. Now
suppose that R has a 5/2-primitive ideal. So there is an R-group of type-5/2.
We have J5/2(R) = N {(0: G) | G is an R-group of type-5/2}. Let G be an
R-group of type-5/2. Let 0 # g € G. Since Rg = G, we get that r — rg is
an R-homomorphism of R onto G with Kernel (0 : g). So R/(0: g) and G
are isomorphic R-groups and hence (0 : g) is a 5/2-modular left ideal of R.
Therefore (0 : G) is an intersection of 5/2-modular left ideals of R. This shows
that Js/2(R) is an intersection of 5/2-modular left ideals of R. Let T be a
5/2-modular left ideal of R. Now R/T is an R-group of type-5/2. Since T
is modular, by Corollary 3.24 of [3], we get that (T' : R) C T. So J5,2(R) C
(T : R) C T. Hence J5/5(R) is the intersection of all 5/2-modular left ideals of
R. O

Lemma 3.5. Let R be a zero-symmetric near-ring and S be an invariant
subnearring of R. If L is a 5/2-modular left ideal of S, then L is an ideal of
the R-group S and S/L is an R-group of type-5/2.

Proof. Let L be a 5/2-modular left ideal of S. Since an R-group of type-
5/2 is an R-group of type-2, L is a 2-modular left ideal of S. Therefore,
by Theorem 3.34 of [3], L is an ideal of the R-group S and S/L is an R-
group of type-2. Let 0 # s+ L € S/L. Since S/L is an S-group of type-
5/2, S(s + L) = S/L. Therefore S/L = S(s+ L) C R(s+ L) € S/L. So
R(s+ L) = S/L and hence S/L is an R-group of type-5/2. a

Theorem 3.6. Let S be an invariant subnear-ring of a zero-symmetric near-
ring R. Then J5/2(S) - J5/2(R) n.Ss.

Proof. If S has no 5/2-primitive ideals then Js/5(S) = § C J5/2(R) N S. So,
suppose that S has 5/2-primitive ideals. Let P be a 5/2-primitive ideal of S.
We get an S-group G of type-5/2 such that P = (0 : G)s. Let 0 # g € G.
Now S/(0: g)s and G are isomorphic as S-groups and that L := (0: g)s is a
5/2-modular left ideal of S and P = (0 : G)s = (0 : S/L)s = (L : S)s. By
Lemma 3.5, /L is an R-group of type-5/2. So Q :=(0:S/L)r = (L : S)r is
a 5/2-primitive ideal of R. Therefore P = (L : S)s =(L: S)rNS=QNS.
Hence J5/2(S) - J5/2(R) n.Js. O

Lemma 3.7. Let S be an invariant subnear-ring of a zero-symmetric near-
ring R. Let L be a 5/2-modular left ideal of R and S ¢ L. Then L N S is a
5/2-modular left ideal of S.

Proof. We have that L is a 5/2-modular left ideal of R and S € L. Now
R=S+L. SoR/L=(S+L)/L~gS/(SNL) and that S/(SN L) is an
R-group of type-5/2. Let L be modular by e. Now r—re € L for allr € R. Let
s€S—(SNL). Since 0 # s+ L € R/L, R(s+L) = R/L and that Rs+ L = R.
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Nowe=rs+l,r€ R,l€ L. SNLis a left ideal of S modular by rs. Lett € §.
Nowte—t € L. Sote~t = t(rs+1)—t = (t(rs+1)—t(rs))+ (t(rs)—t) € L and
that t(rs)—t € LNS. Therefore t+(LﬂS = t(rs)+(LNS) € (Ss+LNS)/(LNS)
and that S/(LNS) = (Ss+LnS)/(LNS)=S(s+(LNS). Hence S/(LNS)
is an S-group of type-5/2. Since LN S is a modular left ideal of S,L N S is a
5/2-modular left ideal of S. O

Theorem 3.8. Let R be a zero-symmetric near-ring and S be an tnvariant
subnearring of R. Then J5/5(S) C J5/2(R) N S.

Proof. If J5/9(R) = R, then Js/2(S) € RNS = J5/2(R) N S. Suppose that
Js/2(R) # R. So R has 5/2-modular left ideals. Let L be a 5/2-modular left
ideal of R. If § C L, then J5/2(5) € § N L. Now suppose that S ¢ L. By
Lemma 3.7, S N L is a 5/2-modular left ideal of S. So J5/2(S) € S N L.
Therefore, by Proposition 3.4, J5,2(S) C Js2(R) N S. O

Theorem 3.9. Let R be a zero-symmetric near-ring and S be an invariant
subnearring of R. Then J5,2(S) = J5,2(R) 0 S.

Theorem 3.10. J;5 is an ideal-hereditary Kurosh-Amitsur radical in the
class of all zero-symmetric near-rings.

We show now that J5/ is not a KA-radical in the class of all near-rings.

Consider the dihedral group Dy = {0, a,2qa,3a,b,a + b,2a + b,3a + b}. Let
T be the near-ring given in Example 11 of [3], (p.418) whose additive group
is Dg. As mentioned in [4], {0}, J = {0,qa,2qa,3a} and T are the ideals of T
Moreover, these are the only left ideals of T'. Now T'/J is the constant near-ring
on Zo. Since T'/J is a T-group of type-5/2, J is a 5/2-primitive ideal and is
the only 5/2-primitive ideal of T'. So J5;o(T) = J.

We need the following result.

Proposition 3.11 (Proposition 3.3 of [4]). Let Q be an ideal-mapping which
satisfies (H1) and for which Q(T) = J and F € Sg, where F is the field of
order 2. Then @ is not idempotent and hence not a KA-radical mapping.

Theorem 3.12. Js/5 is not a KA-radical in the class of all near-rings.

Proof. By Proposition 3.3, we have that J5, is the H-radical corresponding to
the class of all 5/2-primitive near-rings. As seen above J5,5(T) = J. Moreover,
the two element field is in Sj,,,. So, by Proposition 3.11, J5/2 is not a KA-
radical in the class of all near-rings. 1

4. The Jacobson radical of type-(5/2)(0)

It is known that Jacobson radicals of type-2 and 3 are ideal-hereditary KA-
radicals in the class of all zero-symmetric near-rings and the Jacobson radical
of type-2 is not even a KA-radical in the class of all near-rings. S. Veldsman [5]
introduced R-groups of type-2(0) and 3(0) and the corresponding Jacobson
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radicals of type-2(0) and 3(0) which are extensions of the Jacobson radicals of
type-2 and 3 respectively of zero-symmetric near-rings to the class of all near-
rings and has shown that these two new radicals are KA-radicals in the class
of all near-rings.

In this section we introduce R-groups of type-(5/2)(0) and the corresponding
Jacobson radical of type-(5/2)(0). We show that it is a KA-radical in the class
of all near-rings.

Definition 4.1. Let G be an R-group of type-5/2. G is called an R-group of
type-(5/2)(0) if RO = {0}, where 0 is the additive identity in G.

Proposition 4.2. Let G be an R-group of type-5/2. Then G is an R-group
of type-(5/2)(0) if and only if R, C (0 : G), where R, is the constant part of
R.

Proof. Let G be an R-group of type-(5/2)(0). R.g = (Ro)g = R(og) = R0 =
{0} for all g € R. So, R. C (0: G). Suppose now that R. C (0: G). Now R.0
= {0}, where 0 is the additive identity in G. So RO = {0} and hence G is an
R-group of type-(5/2)(0). W

Corollary 4.3. Let R is a zero-symmetric near-ring and G be an R-group.
Then G 1is type-(5/2)(0) if and only if it is of type-5/2.

Definition 4.4. A near-ring R is said to be (5/2)(0)-primitive if it has a
faithful R-group of type-(5/2)(0). An ideal I of R is called (5/2)(0)-primitive
if R/I is a (5/2)(0)-primitive near-ring.

Proposition 4.5. Let I be an ideal of R. Then the following are equivalent.
(1) T s (5/2)(0)-primitive ideal of R.
(ii) I = (0: G) for some R-group G of type-(5/2)(0).

Proof. Suppose that I is a (5/2)(0)-primitive ideal of R. R/I is a (5/2)(0)-
primitive on some R/I-group G of type-(5/2)(0). Since G is a faithful R/I-
group of type-(5/2)(0), G is an R-group of type-5/2 and I = (0 : G). Also,
since R/I is zero-symmetric, R, C I = (0 : G) and hence G is an R-group
of type-(5/2)(0). Conversely, suppose that I = (0 : G) for an R-group G of
type-(5/2)(0). Since G is an R-group of type-(5/2)(0) and I = (0 : G), G is
a faithful R/I-group of type-5/2. Also since R, C (0: G) = I, R/I is a zero-
symmetric near-ring and hence G is a faithful R/I-group of type-(5/2)(0). So
R/I is a (5/2)(0)-primitive near-ring and hence I is a (5/2)(0)-primitive ideal
of R. O

Corollary 4.6. The following are equivalent
(i) {0} is a (5/2)(0)-primitive ideal of R.
(i1} R is (5/2)(0)-primitive.

Corollary 4.7. R is (5/2)(0)-primitive if and only if R is a zero-symmetric
and (5/2)-primitive.
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Remark 4.8. It is clear that a (5/2)(0)-primitive ideal of R contains R., the
constat part of R.

Definition 4.9. Let R be a near-ring. J(5,2)(0)(R) is defined as the intersection
of all (5/2)(0)-primitive ideal of R and J(5/2)(0)(R) = R if R has no (5/2)(0)-
primitive ideals. J(s/9)(0) is called the Jacobson radical of type-(5/2)(0).

Remark 4.10. If R is a ring, then J(5/2)(0)(R) is the Jacobson radical of R.

We show now that J(5/2)(0) is a KA-radical in the class of all near-rings, its
semisimple class is hereditary and radical class is c-hereditary.

Theorem 4.11. The class of all zero-symmetric 5/2-primitive near-rings sat-
isfy condition (F7).

Proof. Since a zero-symmetric 5/2-primitive near-ring is a 2-primitive near-
ring, by Theorem 1.2, we get that the class of all zero-symmetric 5/2-primitive
near-rings also satisfy condition (F;). O

Theorem 4.12. Let R be a near-ring. Js/2y(0) 48 @ KA-radical in the class
of all near-rings, J(s,2)0)(I) C J(5/2)0)(R) N I for all I < R and the equality
holds if I is a left invariant ideal.

Proof. Let M be the class of all zero-symmetric 5/2-primitive near-rings. Now
by Corollary 4.7, J(5/2)0)(R) = (R)M for all near-rings R. By Theorem 3.10,
Js/2 is an ideal-hereditary KA-radical in the class of all zero-symmetric near-
rings. In view of Theorem 1.1, it is enough to show that M satisfies condition
(x) of Theorem 1.1. Let K < I < R and I be a left invariant ideal of R with
I/K € M. By Theorem 4.11, M satisfies condition (F;). So K < R. Since
I is a left invariant ideal of R, R, C I. Also since I/K is a zero-symmetric
near-ring, R, = I. C K. Since R, C K and K < R, we get that R, C K. This
completes the proof. (W]
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