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REAL HYPERSURFACES IN COMPLEX TWO-PLANE
GRASSMANNIANS WITH COMMUTING STRUCTURE
JACOBI OPERATOR

YOUNG JIN SUH AND HAE YOUNG YANG

ABSTRACT. In this paper we give a complete classification of real hyper-
surfaces in complex two-plane Grassmannians G2(C™*+2) with commut-
ing structure Jacobi operator R¢ and another geometric condition.

0. Introduction

In the geometry of real hypersurfaces in complex space forms M, (c) Kimura
[6] has proved that Hopf real hypersurfaces M in a complex projective space
P,,(C) with commuting Ricci tensor are locally congruent to of type (A), a tube
over a totally geodesic Py (C), of type (B), a tube over a complex quadric Qp_1,
cot?2r = n—2, of type (C), a tube over P, (C)X Py—1y/2(C), cot? 2r = —n{—z and
n is odd, of type (D), a tube over a complex two-plane Grassmannian Go (CH),
cot?2r = 2 and n = 9, of type (E), a tube over a Hermitian symmetric space
SO(10)/U(5), cot®>2r = & and n = 15,

The notion of Hopf real hypersurfaces means that the structure vector ¢
defined by £ = —JN satisfies A = af, where J denotes a Kaehler structure
of P,(C), N and A a unit normal and the shape operator of M in P,(C). We
say such a structure vector £ on M the Reeb vector field, and its flow the Reeb
flow on M.

In a quaternionic projective space QP™ Pérez [7] has classified real hyper-
surfaces in QP™ with commuting Ricci tensor S¢; = ¢,5, ¢ = 1,2, 3, where S
(resp. ¢;) denotes the Ricci tensor (resp. the structure tensor) of M in QP™,
is locally congruent to of A;, As-type, that is, a tube over QP* with radius
0<r<3, ke{0,...,m~1}

A Jacobi field along geodesics of a given Riemannian manifold (M, g) is an
important role in the study of differential geometry. It satisfies a well known
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differential equation which inspires Jacobi operators. The Jacobi operator is
defined by (Rx(Y))(p) = (R(Y, X)X )(p), where R denotes the curvature tensor
of M and X,Y denote tangent vector fields on M. Then we see that Rx is
a self-adjoint endomorphism on the tangent space of M and is related to the
differential equation, so called Jacobi equation, which is given by V,/(V.Y) +
R(Y,~')y' = 0 along a geodesic v on M, where ' denotes the velocity vector
along v on M.

When we study a real hypersurface M in a complex space form M (c), c#0,
we will call the Jacobi operator on M with respect to the Reeb vector £ the
structure Jacobi operator on M and will denote it by Re, where R is defined
by Re(X) = R(X, )¢ for the curvature tensor R of M and any tangent vector
field X on M.

For a commuting problem in quaternionic space forms Berndt [2] has intro-
duced the notion of normal Jacobi operator R(X, N)N € EndT, M, zeM for
real hypersurfaces M in quaternionic projective space QP™ or in quaternionic
hyperbolic space QH™, where R denotes the curvature tensor of a quaternionic
projective space QP™ and a quaternionic hyperbolic space QH™. He [2] also
has shown that the curvature adaptedness, that is, the normal Jacobi operator
commutes with the shape operator A, is equivalent to the fact that the distri-
butions ® and D+ = Span{£1, s, &3} are invariant by the shape operator A of
M, where T, M = D@D+, zeM.

Now let us consider a complex two-plane Grassmannians G2(C™"2) which
consists of all complex 2-dimensional linear subspaces in C™*2. Then the
situation for real hypersurfaces in G2(C™+1) with normal Jacobi operator Ry
is not so simple and will be quite different from the cases mentioned above.

The ambient space G2(C™*2) is known to be the unique compact irreducible
Riemannian symmetric space equipped with both a Kéahler structure J and a
quaternionic Kahler structure J not containing J (See Berndt and Suh [3]).
So, in G2(C™*2) we have the two natural geometric conditions for real hyper-
surfaces that [¢] = Span {¢} or D1 = Span {£;,£2,&3} is invariant under the
shape operator. By using such two conditions Berndt and Suh [3] have proved
the following:

Theorem A. Let M be a connected real hypersurface in Go(C™*2), m > 3.
Then both [€] and D1 are invariant under the shape operator of M if and only
if either
(A) M is an open part of a tube around a totally geodesic Go(C™T1) in
Go(C™*?), or
(B) m is even, say m = 2n, and M is an open part of a tube around a
totally geodesic QP™ in Go(C™?).

If the Reeb vector field ¢ of a real hypersurface M in G2(C™?) is invariant
by the shape operator, M is said to be a Hopf hypersurface. In such a case
the integral curves of the Reeb vector field ¢ are geodesics (See Berndt and
Suh [4]). Moreover, the flow generated by the integral curves of the structure
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vector field ¢ for Hopf hypersurfaces in Go(C™*2) is said to be a geodesic Reeb
flow. Moreover, we say M is with non-vanishing geodesic Reeb flow if the
corresponding principal curvature o is non-vanishing.

On the other hand, we say that the Reeb vector field is Killing if the Lie
derivative along the direction of the structure vector field £ vanishes, that is,
Leg = 0, where g denotes the Riemannian metric induced from G(C™+?).
Then this is equivalent to the fact that the structure tensor ¢ commutes with
the shape operator A of M in G2(C™*2). This condition also has the geometric
meaning that the flow of Reeb vector field is isometric. Moreover, Berndt and
Suh [4] have proved that real hypersurfaces in Go(C™+?) with isometric flow
is of a tube over a totally geodesic G5(C™*!) in G2(C™+2).

Now let us introduce a structure Jacobi operator Re in such a way that

Re(X) = R(X,£)¢

for the curvature tensor R(X,Y)Z of M in G2(C™*?), where ¢ denotes the
structure vector, X,Y and Z any tangent vector fields of M in G2(C™*2). Then
the structure Jacobi operator R is said to be commuting if the structure Jacobi
operator Re commutes with the structure tensor ¢, that is, Reod = doR;.

Recently, some geometric properties for such a structure Jacobi operator R
of real hypersurfaces in complex space forms M, (c) have been studied by many
authors (See [5], [8], and [9]). Among them commuting and parallel properties
of such a structure Jacobi operator was studied by Ki, Pérez, Santos and Suh
[5]. Moreover, D-parallel or Lie &-parallel of the structure Jacobi operator are
studied by Pérez, Santos, and Suh (See [8] and [9]).

Now let us put the structure vector £ = —JN into the curvature tensor R
of a real hypersurface M in Go(C™*?), where N denotes a unit normal vector
of M in G2(C™*?). Then for any tangent vector field X on M in Gy(C™*?)
we calculate the structure Jacobi operator R in such a way that

Re(X) = R(X,£)¢

= X=X~ Y {m(X)E - n(X)m. (06
+39(60 X, €)6u€ + M (§) 99X } + aAX — n(AX)AE,

where a denotes the function defined by g( A&, £).

Related to such a structure Jacobi operator Re, in this paper we give a
classification of real hypersurfaces M in G2(C™"2) with commuting structure
Jacobi operator, that is Reo¢ = ¢oRg, as follows:

Theorem. Let M be a real hypersurface in G2(C™+2) with non-vanishing Reeb
flow and commuting structure Jacobi operator. If the © component of the
structure vector & is invariant by the shape operator, then M is congruent to a
tube over a totally geodesic Go(C™H) in Go(C™+2).
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1. Riemannian geometry of Gz(C™*?)

In this section we summarize basic material about G2(C™*2), for details
we refer to [3] and [4]. By G2(C™*2) we denote the set of all complex two-
dimensional linear subspaces in C™*2. The special unitary group G = SU(m+
2) acts transitively on Go(C™*+?) with stabilizer isomorphic to K = S(U(2) x
U(m)) C G. Then G2(C™*2) can be identified with the homogeneous space
G/K, which we equip with the unique analytic structure for which the natural
action of G on Go(C™*?) becomes analytic. Denote by g and ¢ the Lie algebra
of G and K, respectively, and by m the orthogonal complement of € in g with
respect to the Cartan-Killing form B of g. Then g = ¢@m is an Ad(K)-invariant
reductive decomposition of g. We put o = eK and identify T,G>(C™*?) with
m in the usual manner. Since B is negative definite on g, its negative restricted
to m x m yields a positive definite inner product on m. By Ad(K)-invariance of
B this inner product can be extended to a G-invariant Riemannian metric g on
Go2(C™*?). In this way G2(C™*2) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize
g so that the maximal sectional curvature of (G2(C™*?),g) is eight. Since
Go(C3) is isometric to the three-dimensional complex projective space CP?
with constant holomorphic sectional curvature eight we will assume m > 2
from now on. Note that the isomorphism Spin(6) ~ SU(4) yields an isometry
between G2(C?*) and the real Grassmann manifold G (R®) of oriented two-
dimensional linear subspaces of R6.

The Lie algebra ¢ has the direct sum decomposition ¢ = su(m) & su(2) &
R, where R denotes the center of €. Viewing ¢ as the holonomy algebra of
G2(C™*2), the center R induces a Kéhler structure J and the su(2)-part a
quaternionic Kéhler structure J on Go(C™*2). If J; is any almost Hermitian
structure in J, then JJ; = J1J, and J.J; is a symmetric endomorphism with
(JJ1)?2 = I and tr(JJy) = 0. This fact will be used frequently throughout this

paper.
A canonical local basis Jy, J2, J3 of J consists of three local almost Hermit-
ian structures J, in J such that J,J,41 = Jo42 = —Ju41J,, where the index

is taken modulo three. Since J is parallel with respect to the Riemannian con-
nection V of (G2(C™%?), g), there exist for any canonical local basis Ji, J2, J3
of J three local one-forms g1, g2, g3 such that

(1.1) Vxdy = qu2{X) i1 = qur1(X)Jog2

for all vector fields X on Go(C™*2).

Let p € G2(C™*?) and W a subspace of T,G2(C™?). We say that W
is a quaternionic subspace of T,Go(C™+2) if JW C W for all J € J,. And
we say that W is a totally complex subspace of T,G2(C™2) if there exists
a one-dimensional subspace U of J, such that JW C W for all J € ¥ and
JW L W for all J € U+ C J,. Here, the orthogonal complement of ¥ in J,
is taken with respect to the bundle metric and orientation on J for which any
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local oriented orthonormal frame field of J is a canonical local basis of J. A
quaternionic (resp. totally complex) submanifold of G2(C™*?) is a submanifold
all of whose tangent spaces are quaternionic (resp. totally complex) subspaces
of the corresponding tangent spaces of Go(C™"2).

The Riemannian curvature tensor R of G2(C™12) is locally given by

R(X,Y)Z
=g(Y,2)X — g(X,2)Y + g(JY,Z)JX
—g(JX,Z)JY - 29(JX,Y)JZ
(1.2)

3
+ 3 Ag(LY, )1 X - g(J,X, Z) LY —29(J,X,Y)J], Z}
v=1

3
+ Y {9(JJIY, 2)0,JX - g(J,JX, Z)J,JY},

v=1

where J1, J2, J3 is any canonical local basis of J.

2. Some fundamental formulas for real hypersurfaces in G2 (Cm+2)

In this section we want to derive the normal Jacobi operator from the curva-
ture tensor of complex two-plane Grassmannian G»(C™*2) given in (1.2) and
the equation of Gauss. Moreover, in this section we derive some basic formulae
from the Codazzi equation for a real hypersurface in Go(C™*?) (See [3], [4],
(11], [12], [14], and [15]).

Let M be a real hypersurface of Go(C™1?), that is, a hypersurface of
G2(C™*+2) with real codimension one. The induced Riemannian metric on
M will also be denoted by g, and V denotes the Riemannian connection of
(M,g). Let N be a local unit normal field of M and A the shape operator
of M with respect to N. The Kahler structure J of G2(C™*?) induces on M
an almost contact metric structure (¢,£,7n,g). Furthermore, let Ji, J2, J3 be
a canonical local basis of J. Then each J, induces an almost contact metric
structure (¢,,&,,7M,9) on M. Using the above expression for R, the Codazzi
equation becomes

(VxA)Y — (Vy A)X =n(X )¢Y - n(Y)oX - 29(¢X,Y)E

{rZ{m J6,Y = (V)8 X — 296, X, Y)E, )

+ Z ((6X)du8Y — (97 )6, 6X }

v=1

+Z{n ) (8Y) — (Y ) (6X) }, .
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The following identities can be proved in a straightforward method and will
be used frequently in subsequent calculations:

Sur1€y = =&ty D€ur1 = Eura,
& = €, ﬂu(¢X) = ?7(¢VX):
o1 X = b2 X + a1 (X)s,
bu+10,X = =y 42X + 7 (X)E11.

(2.1)

Now let us put
(2.2) JX =X +n(X)N, LX=¢X+n(X)N

for any tangent vector X of a real hypersurface M in Go(C™"2), where N
denotes a normal vector of M in Go(C™"2). Then from this and the formulae
(1.1) and (2.1) we have that

(2.3) (Vx¢)Y =n(Y)AX — g(AX,Y){, Vx§=9¢AX,

(2'4) Vx& =qui2 (X)§v+1 —GQut1 (X)§u+2 + ¢, AX,

(25) (Vx9,)Y = — g1 (X)dps2Y + gup2(X)aY +0,(Y)AX
) - g(AX7 Y)gu

Summing up these formulae, we find the following
Vx(9u€) = Vx ()
= (Vx9)& + &(Vx&)
= qu+2{X)Pv 1€ — Q41(X)Pr28 + S PAX
= 9(AX,§)& +n(6)AX.
Moreover, from JJ, = J,,J, v = 1,2, 3, it follows that

(2.6)

(2.7) ¢, X = ¢ X + 0o (X)E — n(X)Ey.
Then from (1.2) and the above formulae, the equation of Gauss is given by
R(X,Y)Z

= g(Y,Z)X—g(X,Z)Y

+ Z A9(0.Y, 2)8.X — 9(8.X, 2)9,Y — 29(6. X, Y ). 7}
@8 Y {98, 268X — g($.8X, Z)$,4Y)
- Z (299X —n(X)m,(2)9.6Y }

- Zyzl {n(X)g($.4Y, Z) - n(Y)g(6.$X, Z)} &,
+ 9(AY, 2)AX — g(AX, Z)AY.
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3. Proof of our main theorem

Let M be a real hypersurface in Go{(C™*2) with commuting structure Jacobi
operator, that is, Rgo¢ = ¢oR,.

Now by the equation of Gauss {2.8), we define a structure Jacobi operator
R¢ in such a way that

Re(X) = R(X,&)¢

3
=X -nX)=3  {m(X)E — (X))
+39(¢ X, &)$€ + 77u(§)¢u¢X}
+aAX —n(AX)AL.
Then it follows that

Re(6X) = 6X =Y {m(6X)6 — 3n.(X)9us
+ 306 )n(X)e € — m (€ b X
+ 0 (ON(X)d} — n(ApX) AL + AP X,

OR(X) = 6X -3 _ {m(X)dt,
- U(X)‘f}y(ﬁ)@{u - 3?7(¢,,X)§,/ + 4771/(&)7?(9{)11)()5

- "7V(€)¢uX + (ﬁ)TI(X)¢€y}
+ apAX — n{AX)PAE.

Then the commuting Jacobi structure operator, Rgo¢ = ¢oR; is given by

43" (m(6X)6 1 (X)66, + n(X)n, ()08, - (e, X6}
= a(Ad — BA)X +n(AX)$AE - n(A$X) AL

(3.1)

Since we have assumed that M is Hopf, by differentiating A¢ = o€ (See Berndt
and Suh (3]) we have

a(Ad + dA)X — 2A0AX + 26X
62 =2 {(-m(X)¢k - m(@X)6
= M (€)¢e X + 20, (E)n(X) b, + 20, ()7 (¢X)E}.

By the assumption that the structure vector £ is principal in (3.1) and (3.2},
we also have

APAX — 0AdX — ¢X = Zizl{?mu(X )96 = 1 (6 X)E,
+ 0 (§)by X — 4, (n(X) 8, }-

Now in this paper we prove the following

(3.3)
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Proposition 3.1. Let M be a hypersurface in G2(C™t?) with commuting
structure Jacobi operator and non-vanishing geodesic Reeb flow. If the © com-
ponent of the structure vector £ is invariant by the shape operator, then the
structure vector & belongs to either the distribution ® or the distribution DL,

Proof. Let us put ¢ = n(Xo)Xo + n(£&1)€; for some unit X,€® and &€,
Since we have assumed M is Hopf, A = of gives that
n(Xo)AXo + n(€1) A& = an(Xo)Xo + an(&1)ér-
Then it follows that
(%) Ab = o1, AXo = aXp and 72(§) =m3(§) =0.
Then putting X = X, into (3.1) and using ¢(Xy, ¢,€) = —9(¢,X0,§) =0, we
have
(3.4) n(Xo)m (£)¢t1 = a(Ad — $A) Xo = aAdXo — o $Xo.
Also by putting X = X into (3.3}, we have
A$AXy — aAdXo — ¢Xo

= m(§)¢1Xo — 4n1 (€)n(Xo) o1
(3.5) = (€)1 Xo — 4m (E)n(Xo)dér

= m(&)¢1 X0 — 4m (O)n(Xo) $1 X0

= m(&)(1 - 4n(Xo)*)$1 Xo.
Then from (3.5) and (*) we have

(86)  n(€)® =1-n(Xo)* = g(¢Xo, #Xo) = m(£)*(1 - 47(Xo)")".
If n(&) = 0, then by (*) we know that the structure vector £ belongs to the
distribution . If 7;(€)#0, then (3.6) gives 1 — 4n(Xo)? = £1. Then we
consider the following two subcases.

Sub. 1) 1-4n(Xo)* = 1.

In such a subcase n(Xg) = 0. Then it follows that £ = n(£;)6 €D,

Sub. 2) 1—4n(Xq)® =—

It follows that n(Xg) = n(&1) = :i:%. Then without loss of generality we
consider that

1
= Xo+—
£= /50 \/—
Then (3.5) and (*) give the following
1
3.7 —¢Xo = ——=¢1 Xo.
3.7) ¢Xo /3 01%o0

On the other hand, (3.4) implies the following

(38) A(}5X0 = (Ol + )¢X0
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Then by putting X = ¢; into (3.1) and using (3.7), (3.8), we have

4 {968, — 06 + n(&0) i€ —m En($:6)}
= a(Ag ~ pA):
oA — ¢AL)
a(An(Xo)¢1 Xo — an(Xo)p1 Xo)
an(Xo)(A¢1 Xo — a1 Xo)

=« {((a + é)flﬁXo - 01¢X0)}

Il

(3.9)

On the other hand, the left side of (3.9) becomes

A {6608~ 86 +1(€) rE~m(©)n(616) )= 4 (Xo)’ 61 Xo = 26X

From this, together with (3.9), we have ¢X, = 0. This gives

Xo = n(Xo)E = —j—i(%xo ; %gn-

This implies X = &1, which makes a contradiction. So we complete the proof
of our proposition. 3

4. Key propositions

In this section we want to give a complete proof of our main theorem. In
order to do this, let us use Proposition 3.1. First we consider the case that
£eD*. Accordingly, we may put £ = &;. Then (3.1) implies the following

Proposition 4.1. Let us consider the same assumptions as in Proposition 3.1.
If €D, then M is congruent to a tube over a totally geodesic Gia(C™*1) in
Gz(@m+2).

Proof. Since we have assumed £€D1, we may put £ = &. Then from (3.1) we
know that

3
a(Ap ~ pA)X =4 {n(6X)& —nu(X)$& —m(E)(#,X)E} =0

for any vector field X on M in Go(C™*%2). Then by a non-vanishing Reeb
flow we know that the structure tensor ¢ commutes with the shape operator
A of M in Go(C™"2). This means that the Reeb flow is isometric. Then by

a theorem due to Berndt and Suh {4] M is locally congruent to a tube over a
totally geodesic G2(C™*+1) in Go(C™+?) O
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On the other hand, we introduce the following derived from A¢ = of in
Berndt and Suh [3]

ag((Ap + pA)X,Y) — 29(ApAX,Y) + 29(4X,Y)
22 An(Xmu(8Y) = mu (Y ) (6X)

- 9(¢uXa Y)Tlu(ﬁ) Zn(X)nu((bY)Ti‘v (f)
+20(Y ) (X ). (§) }-

Next also by Proposition 3.1 we are able to consider the case that £€D. Now
we assert the following

(4.1)

Proposition 4.2. Let us consider the same assumption as in Proposition 3.1.
If €€, then g(AD, D) =

Proof. The formula (4.1) for (€D gives the following

(42) o(Ag + ¢A) — 2A9AX + 20X = —22 AmA(X)g6, +n.(8X)E. ).

Moreover, from (3.1) and £€D we have

(4.3) 42 m(@X}@%Z 1 (X)b6 = a(Ad — pA)X,

where we have used that M is with geodesic Reeb flow, that is, A = of. Then
from (4.2) and (4.3) we have the following

Lemma 4.3. For £€D we have

3 3
aAPX — ABX +¢X =3 m(dX)6 =3 m(X)¢E
43 43
- azl/:lﬂV@sX}Agu + Ezyzlnu(X)Aéfu-
Now let us consider the maximal distribution § spanned by the orthogonal

complement of the structure vector £ of M in G2{(C™*2). Then by replacing
¢X of Xebh we have

A’X —aAX - X = - 23 m(X)6 — 32 (X )6,
(4.4) 7
+ = Z n(X)AE, + ~Z 7, ($X) Agé, .
Then for any £,€D1 and £, €h, we have

(4.5) A%, — (0 + 4)AL, = 0.
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From this, let us take an inner product (4.4) with X €®. Then it follows that
ag(A2§;z, X )
= og(§u, A%X)
1) = oAX+X - Yo mX)e-3Y_ mlX)ee,
4 3
—Z w(X)A& + =3 m(6X)A¢E,)

= o?g(§, AX) +4Z 9(&, AGE, ) (6X).
For any X €9 orthogonal to ¢,¢, ¢2£ and ¢3¢ we have
ag(A%€,, X) = o?y(€,, AX).
From this, together with (4.5}, it follows that
0= ag(A%¢,, X) — (& +4)g(A&,, X)
= —4g(A¢,, X)
for any X €® orthogonal to ¢1£, ¢2€ and ¢3€.
Let us put X in (4.6) by $»£€D, A =1,2,3. Then it follows that
3
ag(A%€, $3€) = 0®g(€,, ADNE) +4) (€, A I (6761)
= 0129{5#, A‘ﬁ)\g) - 4g(£¢u A¢£A)

Comparing this one with the formula obtained from (4.5) by taking an inner
product with @€ gives

(02 + 4)g(ALy, DrE) = ag(A%E,, $a8) = AP g(E, ADAE) — 49(Eu, ADE).
From this it follows that

(4.1

(4.8) 89(A&, 92€) =0
Summing up (4.7) and (4.8), we conclude that
9(Ag,, X) =0
for any X€®. That is, g(AD,D+) = 0. This completes the proof of our
Proposition 4.2. (]

By Proposition 4.2 and a theorem due to Berndt and Suh (3] we know that
M 1is congruent to a tube over a fotally geodesic and totally real quaternionic
projective space QP™, n = 2m, in Go(C™*2).

It remains to check whether such kind of hypersurfaces satisly commuting
structure Jacobi operator or not.

Let us recall Reo¢p = ¢oR, for £€D and £ is principal. Then we have

(4.9) a(Ag — pA)X = 4}3 An(#X)& = nu(X)96.}.

We introduce a proposition due to Berndt and Suh [3] as follows:
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Proposition B. Let M be a connected real hypersurface of Go(C™+2). Sup-
pose that AD C D, A = of, and & is tangent to ©. Then the quaternionic
dimension m of Go(C™*?) is even, say m = 2n, and M has five distinct con-
stant principal curvatures

a=-2tan(2r) , B=2cot(2r) , y=0, A=cot(r) , p = —tan(r)

h

with some r € (0,7/4). The corresponding multiplicities are
m(e) =1, m(B) =3 =m{y) , m(A) =4n—4 =m(y)
and the corresponding eigenspaces are
TQ:RE 3 Tﬁ:3J€ 3 T7=3€ y T)\ 3 Tpﬂ )

where
ToT,=HCO) , T =T\, T, =Ty, JTL =T, .

In Proposition B we consider a vector X&T), such that AX = AX = cotrX.
From this we have

a(ApX — dAX) =alp — N)¢X =0.

This means cot?r + 1 = 0, which makes a contradiction. So a real hypersurface
M in G2(C™*?) with commuting structure Jacobi operator does not exist.
From this we give a complete proof of our theorem in the introduction.

Remark 4.1. A tube over a totally geodesic Go(C™*1) in Go(C™*?) in The-
orem A has commuting shape operator on the distributions © and D+. Of
course, it is Hopf and naturally in Section 3 we have asserted that such a
hypersurface satisfy Rzo¢ = ¢oR;.

Remark 4.2. A tube over a totally real totally geodesic QP" in G2(C™*?) has
not commuting shape operator on the distributions D and ®-. In Section 4 we
have proved that such a hypersurface is Hopf but can not satisfy R¢o¢ = ¢oR,.
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