REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH COMMUTING STRUCTURE JACOBI OPERATOR

YOUNG JIN SUH AND HAE YOUNG YANG

ABSTRACT. In this paper we give a complete classification of real hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ with commuting structure Jacobi operator R_{ξ} and another geometric condition.

0. Introduction

In the geometry of real hypersurfaces in complex space forms $M_n(c)$ Kimura [6] has proved that Hopf real hypersurfaces M in a complex projective space $P_n(\mathbb{C})$ with commuting Ricci tensor are locally congruent to of type (A), a tube over a totally geodesic $P_k(\mathbb{C})$, of type (B), a tube over a complex quadric Q_{n-1} , $\cot^2 2r = n-2$, of type (C), a tube over $P_1(\mathbb{C}) \times P_{(n-1)/2}(\mathbb{C})$, $\cot^2 2r = \frac{1}{n-2}$ and n is odd, of type (D), a tube over a complex two-plane Grassmannian $G_2(\mathbb{C}^5)$, $\cot^2 2r = \frac{3}{5}$ and n = 9, of type (E), a tube over a Hermitian symmetric space SO(10)/U(5), $\cot^2 2r = \frac{5}{9}$ and n = 15.

The notion of Hopf real hypersurfaces means that the structure vector ξ defined by $\xi = -JN$ satisfies $A\xi = \alpha \xi$, where J denotes a Kaehler structure of $P_n(\mathbb{C})$, N and A a unit normal and the shape operator of M in $P_n(\mathbb{C})$. We say such a structure vector ξ on M the Reeb vector field, and its flow the Reeb flow on M.

In a quaternionic projective space $\mathbb{Q}P^m$ Pérez [7] has classified real hypersurfaces in $\mathbb{Q}P^m$ with commuting Ricci tensor $S\phi_i = \phi_i S$, i = 1, 2, 3, where S (resp. ϕ_i) denotes the Ricci tensor (resp. the structure tensor) of M in $\mathbb{Q}P^m$, is locally congruent to of A_1, A_2 -type, that is, a tube over $\mathbb{Q}P^k$ with radius $0 < r < \frac{\pi}{2}, k \in \{0, ..., m-1\}$.

A Jacobi field along geodesics of a given Riemannian manifold (M, g) is an important role in the study of differential geometry. It satisfies a well known

Received October 11, 2007; Revised January 23, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C40; Secondary 53C15.

Key words and phrases. real hypersurfaces, complex two-plane Grassmannians, commuting structure Jacobi operator, Reeb flow.

This work was supported by grant Proj. No. KRF-2007-313-C00058 from Korea Research Foundation.

differential equation which inspires Jacobi operators. The Jacobi operator is defined by $(R_X(Y))(p) = (R(Y,X)X)(p)$, where R denotes the curvature tensor of M and X,Y denote tangent vector fields on M. Then we see that R_X is a self-adjoint endomorphism on the tangent space of M and is related to the differential equation, so called Jacobi equation, which is given by $\nabla_{\gamma'}(\nabla'_{\gamma}Y) + R(Y,\gamma')\gamma' = 0$ along a geodesic γ on M, where γ' denotes the velocity vector along γ on M.

When we study a real hypersurface M in a complex space form $M_n(c)$, $c\neq 0$, we will call the Jacobi operator on M with respect to the *Reeb* vector ξ the structure Jacobi operator on M and will denote it by R_{ξ} , where R_{ξ} is defined by $R_{\xi}(X) = R(X, \xi)\xi$ for the curvature tensor R of M and any tangent vector field X on M.

For a commuting problem in quaternionic space forms Berndt [2] has introduced the notion of normal Jacobi operator $\bar{R}(X,N)N \in \operatorname{End} T_x M$, $x \in M$ for real hypersurfaces M in quaternionic projective space $\mathbb{Q}P^m$ or in quaternionic hyperbolic space $\mathbb{Q}P^m$ and a quaternionic hyperbolic space $\mathbb{Q}P^m$ and a quaternionic hyperbolic space $\mathbb{Q}P^m$. He [2] also has shown that the curvature adaptedness, that is, the normal Jacobi operator commutes with the shape operator A, is equivalent to the fact that the distributions \mathfrak{D} and $\mathfrak{D}^\perp = \operatorname{Span}\{\xi_1, \xi_2, \xi_3\}$ are invariant by the shape operator A of M, where $T_x M = \mathfrak{D} \oplus \mathfrak{D}^\perp$, $x \in M$.

Now let us consider a complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ which consists of all complex 2-dimensional linear subspaces in \mathbb{C}^{m+2} . Then the situation for real hypersurfaces in $G_2(\mathbb{C}^{m+1})$ with normal Jacobi operator \bar{R}_N is not so simple and will be quite different from the cases mentioned above.

The ambient space $G_2(\mathbb{C}^{m+2})$ is known to be the unique compact irreducible Riemannian symmetric space equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} not containing J (See Berndt and Suh [3]). So, in $G_2(\mathbb{C}^{m+2})$ we have the two natural geometric conditions for real hypersurfaces that $[\xi] = \operatorname{Span} \{\xi\}$ or $\mathfrak{D}^{\perp} = \operatorname{Span} \{\xi_1, \xi_2, \xi_3\}$ is invariant under the shape operator. By using such two conditions Berndt and Suh [3] have proved the following:

Theorem A. Let M be a connected real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$. Then both $[\xi]$ and \mathfrak{D}^{\perp} are invariant under the shape operator of M if and only if either

- (A) M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$, or
- (B) m is even, say m=2n, and M is an open part of a tube around a totally geodesic $\mathbb{Q}P^n$ in $G_2(\mathbb{C}^{m+2})$.

If the *Reeb* vector field ξ of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$ is invariant by the shape operator, M is said to be a *Hopf hypersurface*. In such a case the integral curves of the *Reeb* vector field ξ are geodesics (See Berndt and Suh [4]). Moreover, the flow generated by the integral curves of the structure

vector field ξ for Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ is said to be a geodesic Reeb flow. Moreover, we say M is with non-vanishing geodesic Reeb flow if the corresponding principal curvature α is non-vanishing.

On the other hand, we say that the Reeb vector field is Killing if the Lie derivative along the direction of the structure vector field ξ vanishes, that is, $\mathcal{L}_{\xi}g = 0$, where g denotes the Riemannian metric induced from $G_2(\mathbb{C}^{m+2})$. Then this is equivalent to the fact that the structure tensor ϕ commutes with the shape operator A of M in $G_2(\mathbb{C}^{m+2})$. This condition also has the geometric meaning that the flow of Reeb vector field is isometric. Moreover, Berndt and Suh [4] have proved that real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with isometric flow is of a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

Now let us introduce a structure Jacobi operator R_{ξ} in such a way that

$$R_{\xi}(X) = R(X, \xi)\xi$$

for the curvature tensor R(X,Y)Z of M in $G_2(\mathbb{C}^{m+2})$, where ξ denotes the structure vector, X,Y and Z any tangent vector fields of M in $G_2(\mathbb{C}^{m+2})$. Then the structure Jacobi operator R_{ξ} is said to be *commuting* if the structure Jacobi operator R_{ξ} commutes with the structure tensor ϕ , that is, $R_{\xi} \circ \phi = \phi \circ R_{\xi}$.

Recently, some geometric properties for such a structure Jacobi operator R_{ξ} of real hypersurfaces in complex space forms $M_n(c)$ have been studied by many authors (See [5], [8], and [9]). Among them commuting and parallel properties of such a structure Jacobi operator was studied by Ki, Pérez, Santos and Suh [5]. Moreover, \mathfrak{D} -parallel or Lie ξ -parallel of the structure Jacobi operator are studied by Pérez, Santos, and Suh (See [8] and [9]).

Now let us put the structure vector $\xi = -JN$ into the curvature tensor R of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$, where N denotes a unit normal vector of M in $G_2(\mathbb{C}^{m+2})$. Then for any tangent vector field X on M in $G_2(\mathbb{C}^{m+2})$ we calculate the structure Jacobi operator R_{ξ} in such a way that

$$R_{\xi}(X) = R(X, \xi)\xi$$

$$= X - \eta(X)\xi - \sum_{\nu=1}^{3} \{\eta_{\nu}(X)\xi_{\nu} - \eta(X)\eta_{\nu}(\xi)\xi_{\nu} + 3g(\phi_{\nu}X, \xi)\phi_{\nu}\xi + \eta_{\nu}(\xi)\phi_{\nu}\phi X\} + \alpha AX - \eta(AX)A\xi,$$

where α denotes the function defined by $g(A\xi, \xi)$.

Related to such a structure Jacobi operator R_{ξ} , in this paper we give a classification of real hypersurfaces M in $G_2(\mathbb{C}^{m+2})$ with commuting structure Jacobi operator, that is $R_{\xi} \circ \phi = \phi \circ R_{\xi}$, as follows:

Theorem. Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$ with non-vanishing Reeb flow and commuting structure Jacobi operator. If the \mathfrak{D} component of the structure vector ξ is invariant by the shape operator, then M is congruent to a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

1. Riemannian geometry of $G_2(\mathbb{C}^{m+2})$

In this section we summarize basic material about $G_2(\mathbb{C}^{m+2})$, for details we refer to [3] and [4]. By $G_2(\mathbb{C}^{m+2})$ we denote the set of all complex twodimensional linear subspaces in \mathbb{C}^{m+2} . The special unitary group G = SU(m+1)2) acts transitively on $G_2(\mathbb{C}^{m+2})$ with stabilizer isomorphic to $K = S(U(2) \times \mathbb{C}^{m+2})$ $U(m) \subset G$. Then $G_2(\mathbb{C}^{m+2})$ can be identified with the homogeneous space G/K, which we equip with the unique analytic structure for which the natural action of G on $G_2(\mathbb{C}^{m+2})$ becomes analytic. Denote by \mathfrak{g} and \mathfrak{k} the Lie algebra of G and K, respectively, and by m the orthogonal complement of \mathfrak{k} in g with respect to the Cartan-Killing form B of g. Then $g = \mathfrak{k} \oplus \mathfrak{m}$ is an Ad(K)-invariant reductive decomposition of g. We put o = eK and identify $T_oG_2(\mathbb{C}^{m+2})$ with \mathfrak{m} in the usual manner. Since B is negative definite on \mathfrak{g} , its negative restricted to $\mathfrak{m} \times \mathfrak{m}$ yields a positive definite inner product on \mathfrak{m} . By Ad(K)-invariance of B this inner product can be extended to a G-invariant Riemannian metric q on $G_2(\mathbb{C}^{m+2})$. In this way $G_2(\mathbb{C}^{m+2})$ becomes a Riemannian homogeneous space, even a Riemannian symmetric space. For computational reasons we normalize q so that the maximal sectional curvature of $(G_2(\mathbb{C}^{m+2}),q)$ is eight. Since $G_2(\mathbb{C}^3)$ is isometric to the three-dimensional complex projective space $\mathbb{C}P^2$ with constant holomorphic sectional curvature eight we will assume $m \geq 2$ from now on. Note that the isomorphism $Spin(6) \simeq SU(4)$ yields an isometry between $G_2(\mathbb{C}^4)$ and the real Grassmann manifold $G_2^+(\mathbb{R}^6)$ of oriented twodimensional linear subspaces of \mathbb{R}^6 .

The Lie algebra $\mathfrak k$ has the direct sum decomposition $\mathfrak k=\mathfrak su(m)\oplus\mathfrak su(2)\oplus\mathfrak R$, where $\mathfrak R$ denotes the center of $\mathfrak k$. Viewing $\mathfrak k$ as the holonomy algebra of $G_2(\mathbb C^{m+2})$, the center $\mathfrak R$ induces a Kähler structure J and the $\mathfrak su(2)$ -part a quaternionic Kähler structure $\mathfrak J$ on $G_2(\mathbb C^{m+2})$. If J_1 is any almost Hermitian structure in $\mathfrak J$, then $JJ_1=J_1J$, and JJ_1 is a symmetric endomorphism with $(JJ_1)^2=I$ and $\operatorname{tr}(JJ_1)=0$. This fact will be used frequently throughout this paper.

A canonical local basis J_1, J_2, J_3 of \mathfrak{J} consists of three local almost Hermitian structures J_{ν} in \mathfrak{J} such that $J_{\nu}J_{\nu+1}=J_{\nu+2}=-J_{\nu+1}J_{\nu}$, where the index is taken modulo three. Since \mathfrak{J} is parallel with respect to the Riemannian connection $\bar{\nabla}$ of $(G_2(\mathbb{C}^{m+2}), g)$, there exist for any canonical local basis J_1, J_2, J_3 of \mathfrak{J} three local one-forms q_1, q_2, q_3 such that

$$\bar{\nabla}_X J_{\nu} = q_{\nu+2}(X) J_{\nu+1} - q_{\nu+1}(X) J_{\nu+2}$$

for all vector fields X on $G_2(\mathbb{C}^{m+2})$.

Let $p \in G_2(\mathbb{C}^{m+2})$ and W a subspace of $T_pG_2(\mathbb{C}^{m+2})$. We say that W is a quaternionic subspace of $T_pG_2(\mathbb{C}^{m+2})$ if $JW \subset W$ for all $J \in \mathfrak{J}_p$. And we say that W is a totally complex subspace of $T_pG_2(\mathbb{C}^{m+2})$ if there exists a one-dimensional subspace \mathfrak{V} of \mathfrak{J}_p such that $JW \subset W$ for all $J \in \mathfrak{V}$ and $JW \perp W$ for all $J \in \mathfrak{V}^{\perp} \subset \mathfrak{J}_p$. Here, the orthogonal complement of \mathfrak{V} in \mathfrak{J}_p is taken with respect to the bundle metric and orientation on \mathfrak{J} for which any

local oriented orthonormal frame field of \mathfrak{J} is a canonical local basis of \mathfrak{J} . A quaternionic (resp. totally complex) submanifold of $G_2(\mathbb{C}^{m+2})$ is a submanifold all of whose tangent spaces are quaternionic (resp. totally complex) subspaces of the corresponding tangent spaces of $G_2(\mathbb{C}^{m+2})$.

The Riemannian curvature tensor \bar{R} of $G_2(\mathbb{C}^{m+2})$ is locally given by

$$\bar{R}(X,Y)Z
= g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX
- g(JX,Z)JY - 2g(JX,Y)JZ
+ \sum_{\nu=1}^{3} \{g(J_{\nu}Y,Z)J_{\nu}X - g(J_{\nu}X,Z)J_{\nu}Y - 2g(J_{\nu}X,Y)J_{\nu}Z\}
+ \sum_{\nu=1}^{3} \{g(J_{\nu}JY,Z)J_{\nu}JX - g(J_{\nu}JX,Z)J_{\nu}JY\},$$

where J_1, J_2, J_3 is any canonical local basis of \mathfrak{J} .

2. Some fundamental formulas for real hypersurfaces in $G_2(\mathbb{C}^{m+2})$

In this section we want to derive the normal Jacobi operator from the curvature tensor of complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ given in (1.2) and the equation of Gauss. Moreover, in this section we derive some basic formulae from the Codazzi equation for a real hypersurface in $G_2(\mathbb{C}^{m+2})$ (See [3], [4], [11], [12], [14], and [15]).

Let M be a real hypersurface of $G_2(\mathbb{C}^{m+2})$, that is, a hypersurface of $G_2(\mathbb{C}^{m+2})$ with real codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian connection of (M,g). Let N be a local unit normal field of M and A the shape operator of M with respect to N. The Kähler structure J of $G_2(\mathbb{C}^{m+2})$ induces on M an almost contact metric structure (ϕ,ξ,η,g) . Furthermore, let J_1,J_2,J_3 be a canonical local basis of \mathfrak{J} . Then each J_{ν} induces an almost contact metric structure $(\phi_{\nu},\xi_{\nu},\eta_{\nu},g)$ on M. Using the above expression for \bar{R} , the Codazzi equation becomes

$$\begin{split} (\nabla_X A) Y - (\nabla_Y A) X &= \eta(X) \phi Y - \eta(Y) \phi X - 2g(\phi X, Y) \xi \\ &+ \sum_{\nu=1}^3 \left\{ \eta_{\nu}(X) \phi_{\nu} Y - \eta_{\nu}(Y) \phi_{\nu} X - 2g(\phi_{\nu} X, Y) \xi_{\nu} \right\} \\ &+ \sum_{\nu=1}^3 \left\{ \eta_{\nu}(\phi X) \phi_{\nu} \phi Y - \eta_{\nu}(\phi Y) \phi_{\nu} \phi X \right\} \\ &+ \sum_{\nu=1}^3 \left\{ \eta(X) \eta_{\nu}(\phi Y) - \eta(Y) \eta_{\nu}(\phi X) \right\} \xi_{\nu} \; . \end{split}$$

The following identities can be proved in a straightforward method and will be used frequently in subsequent calculations:

(2.1)
$$\phi_{\nu+1}\xi_{\nu} = -\xi_{\nu+2}, \quad \phi_{\nu}\xi_{\nu+1} = \xi_{\nu+2}, \\ \phi\xi_{\nu} = \phi_{\nu}\xi, \quad \eta_{\nu}(\phi X) = \eta(\phi_{\nu}X), \\ \phi_{\nu}\phi_{\nu+1}X = \phi_{\nu+2}X + \eta_{\nu+1}(X)\xi_{\nu}, \\ \phi_{\nu+1}\phi_{\nu}X = -\phi_{\nu+2}X + \eta_{\nu}(X)\xi_{\nu+1}.$$

Now let us put

(2.2)
$$JX = \phi X + \eta(X)N, \quad J_{\nu}X = \phi_{\nu}X + \eta_{\nu}(X)N$$

for any tangent vector X of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$, where N denotes a normal vector of M in $G_2(\mathbb{C}^{m+2})$. Then from this and the formulae (1.1) and (2.1) we have that

(2.3)
$$(\nabla_X \phi) Y = \eta(Y) A X - g(AX, Y) \xi, \quad \nabla_X \xi = \phi A X,$$

$$\nabla_X \xi_{\nu} = q_{\nu+2}(X)\xi_{\nu+1} - q_{\nu+1}(X)\xi_{\nu+2} + \phi_{\nu} AX,$$

(2.5)
$$(\nabla_X \phi_{\nu})Y = -q_{\nu+1}(X)\phi_{\nu+2}Y + q_{\nu+2}(X)\phi_{\nu+1}Y + \eta_{\nu}(Y)AX - g(AX, Y)\xi_{\nu}.$$

Summing up these formulae, we find the following

(2.6)
$$\nabla_{X}(\phi_{\nu}\xi) = \nabla_{X}(\phi\xi_{\nu})$$

$$= (\nabla_{X}\phi)\xi_{\nu} + \phi(\nabla_{X}\xi_{\nu})$$

$$= q_{\nu+2}(X)\phi_{\nu+1}\xi - q_{\nu+1}(X)\phi_{\nu+2}\xi + \phi_{\nu}\phi AX$$

$$- g(AX, \xi)\xi_{\nu} + \eta(\xi_{\nu})AX.$$

Moreover, from $JJ_{\nu}=J_{\nu}J$, $\nu=1,2,3$, it follows that

(2.7)
$$\phi\phi_{\nu}X = \phi_{\nu}\phi X + \eta_{\nu}(X)\xi - \eta(X)\xi_{\nu}.$$

Then from (1.2) and the above formulae, the equation of Gauss is given by

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z + \sum_{\nu=1}^{3} \{g(\phi_{\nu}Y,Z)\phi_{\nu}X - g(\phi_{\nu}X,Z)\phi_{\nu}Y - 2g(\phi_{\nu}X,Y)\phi_{\nu}Z\} + \sum_{\nu=1}^{3} \{g(\phi_{\nu}\phi Y,Z)\phi_{\nu}\phi X - g(\phi_{\nu}\phi X,Z)\phi_{\nu}\phi Y\} - \sum_{\nu=1}^{3} \{\eta(Y)\eta_{\nu}(Z)\phi_{\nu}\phi X - \eta(X)\eta_{\nu}(Z)\phi_{\nu}\phi Y\} - \sum_{\nu=1}^{3} \{\eta(X)g(\phi_{\nu}\phi Y,Z) - \eta(Y)g(\phi_{\nu}\phi X,Z)\}\xi_{\nu} + g(AY,Z)AX - g(AX,Z)AY.$$

3. Proof of our main theorem

Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$ with commuting structure Jacobi operator, that is, $R_{\ell} \circ \phi = \phi \circ R_{\ell}$.

Now by the equation of Gauss (2.8), we define a structure Jacobi operator R_{ℓ} in such a way that

$$R_{\xi}(X) = R(X, \xi)\xi$$

$$= X - \eta(X)\xi - \sum_{\nu=1}^{3} \{\eta_{\nu}(X)\xi_{\nu} - \eta(X)\eta_{\nu}(\xi)\xi_{\nu} + 3g(\phi_{\nu}X, \xi)\phi_{\nu}\xi + \eta_{\nu}(\xi)\phi_{\nu}\phi X\} + \alpha AX - \eta(AX)A\xi.$$

Then it follows that

$$R_{\xi}(\phi X) = \phi X - \sum_{\nu=1}^{3} \{ \eta_{\nu}(\phi X) \xi_{\nu} - 3\eta_{\nu}(X) \phi_{\nu} \xi + 3\eta(\xi_{\nu}) \eta(X) \phi_{\nu} \xi - \eta_{\nu}(\xi) \phi_{\nu} X + \eta_{\nu}(\xi) \eta(X) \phi_{\nu} \xi \} - \eta(A\phi X) A \xi + \alpha A \phi X,$$

$$\phi R_{\xi}(X) = \phi X - \sum_{\nu=1}^{3} \{ \eta_{\nu}(X) \phi \xi_{\nu}
- \eta(X) \eta_{\nu}(\xi) \phi \xi_{\nu} - 3 \eta(\phi_{\nu} X) \xi_{\nu} + 4 \eta_{\nu}(\xi) \eta(\phi_{\nu} X) \xi_{\nu}
- \eta_{\nu}(\xi) \phi_{\nu} X + \eta_{\nu}(\xi) \eta(X) \phi \xi_{\nu} \}
+ \alpha \phi A X - \eta(A X) \phi A \xi.$$

Then the commuting Jacobi structure operator, $R_{\xi} \circ \phi = \phi \circ R_{\xi}$ is given by

(3.1)
$$4\sum_{\nu=1}^{3} \{ \eta_{\nu}(\phi X) \xi_{\nu} - \eta_{\nu}(X) \phi \xi_{\nu} + \eta(X) \eta_{\nu}(\xi) \phi \xi_{\nu} - \eta_{\nu}(\xi) \eta(\phi_{\nu} X) \xi \}$$
$$= \alpha (A\phi - \phi A) X + \eta(AX) \phi A \xi - \eta(A\phi X) A \xi.$$

Since we have assumed that M is Hopf, by differentiating $A\xi = \alpha \xi$ (See Berndt and Suh [3]) we have

(3.2)
$$\alpha(A\phi + \phi A)X - 2A\phi AX + 2\phi X$$
$$= 2\sum_{\nu=1}^{3} \{-\eta_{\nu}(X)\phi\xi_{\nu} - \eta_{\nu}(\phi X)\xi_{\nu} - \eta_{\nu}(\xi)\phi_{\nu}X + 2\eta_{\nu}(\xi)\eta(X)\phi\xi_{\nu} + 2\eta_{\nu}(\xi)\eta_{\nu}(\phi X)\xi\}.$$

By the assumption that the structure vector ξ is principal in (3.1) and (3.2), we also have

(3.3)
$$A\phi AX - \alpha A\phi X - \phi X = \sum_{\nu=1}^{3} \{3\eta_{\nu}(X)\phi\xi_{\nu} - \eta_{\nu}(\phi X)\xi_{\nu} + \eta_{\nu}(\xi)\phi_{\nu}X - 4\eta_{\nu}(\xi)\eta(X)\phi\xi_{\nu}\}.$$

Now in this paper we prove the following

Proposition 3.1. Let M be a hypersurface in $G_2(\mathbb{C}^{m+2})$ with commuting structure Jacobi operator and non-vanishing geodesic Reeb flow. If the \mathfrak{D} component of the structure vector ξ is invariant by the shape operator, then the structure vector ξ belongs to either the distribution \mathfrak{D} or the distribution \mathfrak{D}^{\perp} .

Proof. Let us put $\xi = \eta(X_0)X_0 + \eta(\xi_1)\xi_1$ for some unit $X_0 \in \mathfrak{D}$ and $\xi_1 \in \mathfrak{D}^{\perp}$. Since we have assumed M is Hopf, $A\xi = \alpha \xi$ gives that

$$\eta(X_0)AX_0 + \eta(\xi_1)A\xi_1 = \alpha\eta(X_0)X_0 + \alpha\eta(\xi_1)\xi_1.$$

Then it follows that

(*)
$$A\xi_1 = \alpha \xi_1, AX_0 = \alpha X_0 \text{ and } \eta_2(\xi) = \eta_3(\xi) = 0.$$

Then putting $X = X_0$ into (3.1) and using $g(X_0, \phi_{\nu}\xi) = -g(\phi_{\nu}X_0, \xi) = 0$, we have

(3.4)
$$4\eta(X_0)\eta_1(\xi)\phi\xi_1 = \alpha(A\phi - \phi A)X_0 = \alpha A\phi X_0 - \alpha^2 \phi X_0.$$

Also by putting $X = X_0$ into (3.3), we have

$$A\phi A X_0 - \alpha A\phi X_0 - \phi X_0$$

$$= \eta_1(\xi)\phi_1 X_0 - 4\eta_1(\xi)\eta(X_0)\phi\xi_1$$

$$= \eta_1(\xi)\phi_1 X_0 - 4\eta_1(\xi)\eta(X_0)\phi\xi_1$$

$$= \eta_1(\xi)\phi_1 X_0 - 4\eta_1(\xi)\eta(X_0)^2\phi_1 X_0$$

$$= \eta_1(\xi)(1 - 4\eta(X_0)^2)\phi_1 X_0.$$

Then from (3.5) and (*) we have

(3.6)
$$\eta(\xi_1)^2 = 1 - \eta(X_0)^2 = g(\phi X_0, \phi X_0) = \eta_1(\xi)^2 (1 - 4\eta(X_0)^2)^2.$$

If $\eta(\xi_1) = 0$, then by (*) we know that the structure vector ξ belongs to the distribution \mathfrak{D} . If $\eta_1(\xi) \neq 0$, then (3.6) gives $1 - 4\eta(X_0)^2 = \pm 1$. Then we consider the following two subcases.

Sub. 1)
$$1 - 4\eta(X_0)^2 = 1$$
.

In such a subcase $\eta(X_0) = 0$. Then it follows that $\xi = \eta(\xi_1)\xi_1 \in \mathfrak{D}^{\perp}$.

Sub. 2)
$$1 - 4\eta(X_0)^2 = -1$$
.

It follows that $\eta(X_0) = \eta(\xi_1) = \pm \frac{1}{\sqrt{2}}$. Then without loss of generality we consider that

$$\xi = \frac{1}{\sqrt{2}}X_0 + \frac{1}{\sqrt{2}}\xi_1.$$

Then (3.5) and (*) give the following

$$-\phi X_0 = -\frac{1}{\sqrt{2}}\phi_1 X_0.$$

On the other hand, (3.4) implies the following

$$(3.8) A\phi X_0 = (\alpha + \frac{2}{\alpha})\phi X_0.$$

Then by putting $X = \xi_1$ into (3.1) and using (3.7), (3.8), we have

$$4\sum_{\nu=1}^{3} \left\{ \eta_{\nu}(\phi\xi_{1})\xi_{\nu} - \phi\xi_{1} + \eta(\xi_{1})^{2}\phi_{1}\xi - \eta_{1}(\xi)\eta(\phi_{1}\xi) \right\}$$

$$= \alpha(A\phi - \phi A)\xi_{1}$$

$$= \alpha(A\phi_{1}\xi - \phi A\xi_{1})$$

$$= \alpha(A\eta(X_{0})\phi_{1}X_{0} - \alpha\eta(X_{0})\phi_{1}X_{0})$$

$$= \alpha\eta(X_{0})(A\phi_{1}X_{0} - \alpha\phi_{1}X_{0})$$

$$= \alpha\left\{ \left((\alpha + \frac{2}{\alpha})\phi X_{0} - \alpha\phi X_{0} \right) \right\}$$

$$= 2\phi X_{0}.$$

On the other hand, the left side of (3.9) becomes

$$4\sum_{\nu=1}^{3} \left\{ \eta_{\nu}(\phi\xi_{1})\xi_{\nu} - \phi\xi_{1} + \eta(\xi_{1})^{2}\phi_{1}\xi - \eta_{1}(\xi)\eta(\phi_{1}\xi) \right\} = -4\eta(X_{0})^{3}\phi_{1}X_{0} = -2\phi X_{0}.$$

From this, together with (3.9), we have $\phi X_0 = 0$. This gives

$$X_0 = \eta(X_0)\xi = \frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}X_0 + \frac{1}{\sqrt{2}}\xi_1).$$

This implies $X_0 = \xi_1$, which makes a contradiction. So we complete the proof of our proposition.

4. Key propositions

In this section we want to give a complete proof of our main theorem. In order to do this, let us use Proposition 3.1. First we consider the case that $\xi \in \mathfrak{D}^{\perp}$. Accordingly, we may put $\xi = \xi_1$. Then (3.1) implies the following

Proposition 4.1. Let us consider the same assumptions as in Proposition 3.1. If $\xi \in \mathfrak{D}^{\perp}$, then M is congruent to a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

Proof. Since we have assumed $\xi \in \mathfrak{D}^{\perp}$, we may put $\xi = \xi_1$. Then from (3.1) we know that

$$\alpha(A\phi - \phi A)X = 4\sum_{\nu=1}^{3} \{ \eta_{\nu}(\phi X)\xi_{\nu} - \eta_{\nu}(X)\phi\xi_{\nu} - \eta_{\nu}(\xi)\eta(\phi_{\nu}X)\xi \} = 0$$

for any vector field X on M in $G_2(\mathbb{C}^{m+2})$. Then by a non-vanishing Reeb flow we know that the structure tensor ϕ commutes with the shape operator A of M in $G_2(\mathbb{C}^{m+2})$. This means that the Reeb flow is isometric. Then by a theorem due to Berndt and Suh [4] M is locally congruent to a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$

On the other hand, we introduce the following derived from $A\xi = \alpha \xi$ in Berndt and Suh [3]

(4.1)
$$\alpha g((A\phi + \phi A)X, Y) - 2g(A\phi AX, Y) + 2g(\phi X, Y)$$

$$= 2\sum_{\nu=1}^{3} \{\eta_{\nu}(X)\eta_{\nu}(\phi Y) - \eta_{\nu}(Y)\eta_{\nu}(\phi X)$$

$$- g(\phi_{\nu}X, Y)\eta_{\nu}(\xi) - 2\eta(X)\eta_{\nu}(\phi Y)\eta_{\nu}(\xi)$$

$$+ 2\eta(Y)\eta_{\nu}(\phi X)\eta_{\nu}(\xi) \}.$$

Next also by Proposition 3.1 we are able to consider the case that $\xi \in \mathfrak{D}$. Now we assert the following

Proposition 4.2. Let us consider the same assumption as in Proposition 3.1. If $\xi \in \mathfrak{D}$, then $g(\mathfrak{A}\mathfrak{D}, \mathfrak{D}^{\perp}) = 0$.

Proof. The formula (4.1) for $\xi \in \mathfrak{D}$ gives the following

(4.2)
$$\alpha(A\phi + \phi A) - 2A\phi AX + 2\phi X = -2\sum_{\nu=1}^{3} {\{\eta_{\nu}(X)\phi\xi_{\nu} + \eta_{\nu}(\phi X)\xi_{\nu}\}}.$$

Moreover, from (3.1) and $\xi \in \mathfrak{D}$ we have

(4.3)
$$4\sum_{\nu=1}^{3} \eta_{\nu}(\phi X) \xi_{\nu} - 4\sum_{\nu=1}^{3} \eta_{\nu}(X) \phi \xi_{\nu} = \alpha (A\phi - \phi A) X,$$

where we have used that M is with geodesic Reeb flow, that is, $A\xi = \alpha \xi$. Then from (4.2) and (4.3) we have the following

Lemma 4.3. For $\xi \in \mathfrak{D}$ we have

$$\alpha A \phi X - A^2 \phi X + \phi X = \sum_{\nu=1}^{3} \eta_{\nu}(\phi X) \xi_{\nu} - 3 \sum_{\nu=1}^{3} \eta_{\nu}(X) \phi \xi_{\nu} - \frac{4}{\alpha} \sum_{\nu=1}^{3} \eta_{\nu}(\phi X) A \xi_{\nu} + \frac{4}{\alpha} \sum_{\nu=1}^{3} \eta_{\nu}(X) A \phi \xi_{\nu}.$$

Now let us consider the maximal distribution \mathfrak{h} spanned by the orthogonal complement of the structure vector ξ of M in $G_2(\mathbb{C}^{m+2})$. Then by replacing ϕX of $X \in \mathfrak{h}$ we have

(4.4)
$$A^{2}X - \alpha AX - X = -\sum_{\nu=1}^{3} \eta_{\nu}(X)\xi_{\nu} - 3\sum_{\nu=1}^{3} \eta_{\nu}(\phi X)\phi\xi_{\nu} + \frac{4}{\alpha}\sum_{\nu=1}^{3} \eta_{\nu}(X)A\xi_{\nu} + \frac{4}{\alpha}\sum_{\nu=1}^{3} \eta_{\nu}(\phi X)A\phi\xi_{\nu}.$$

Then for any $\xi_{\mu} \in \mathfrak{D}^{\perp}$ and $\xi_{\mu} \in \mathfrak{h}$, we have

(4.5)
$$\alpha A^2 \xi_{\mu} - (\alpha^2 + 4) A \xi_{\mu} = 0.$$

From this, let us take an inner product (4.4) with $X \in \mathfrak{D}$. Then it follows that

$$\alpha g(A^{2}\xi_{\mu}, X)$$

$$= \alpha g(\xi_{\mu}, A^{2}X)$$

$$= \alpha g(\xi_{\mu}, \alpha AX + X - \sum_{\nu=1}^{3} \eta_{\nu}(X)\xi_{\nu} - 3\sum_{\nu=1}^{3} \eta_{\nu}(\phi X)\phi\xi_{\nu}$$

$$+ \frac{4}{\alpha} \sum_{\nu=1}^{3} \eta_{\nu}(X)A\xi_{\nu} + \frac{4}{\alpha} \sum_{\nu=1}^{3} \eta_{\nu}(\phi X)A\phi\xi_{\nu})$$

$$= \alpha^{2}g(\xi_{\mu}, AX) + 4\sum_{\nu=1}^{3} g(\xi_{\mu}, A\phi\xi_{\nu})\eta_{\nu}(\phi X).$$

For any $X \in \mathfrak{D}$ orthogonal to $\phi_1 \xi, \phi_2 \xi$ and $\phi_3 \xi$ we have

$$\alpha g(A^2 \xi_{\mu}, X) = \alpha^2 g(\xi_{\mu}, AX).$$

From this, together with (4.5), it follows that

(4.7)
$$0 = \alpha g(A^2 \xi_{\mu}, X) - (\alpha^2 + 4) g(A \xi_{\mu}, X)$$
$$= -4g(A \xi_{\mu}, X)$$

for any $X \in \mathfrak{D}$ orthogonal to $\phi_1 \xi, \phi_2 \xi$ and $\phi_3 \xi$.

Let us put X in (4.6) by $\phi_{\lambda}\xi\in\mathfrak{D}$, $\lambda=1,2,3$. Then it follows that

$$\alpha g(A^2 \xi_{\mu}, \phi_{\lambda} \xi) = \alpha^2 g(\xi_{\mu}, A \phi_{\lambda} \xi) + 4 \sum_{\nu=1}^{3} g(\xi_{\mu}, A \phi \xi_{\nu}) \eta_{\nu} (\phi^2 \xi_{\lambda})$$
$$= \alpha^2 g(\xi_{\mu}, A \phi_{\lambda} \xi) - 4 g(\xi_{\mu}, A \phi \xi_{\lambda}).$$

Comparing this one with the formula obtained from (4.5) by taking an inner product with $\phi_{\lambda}\xi$ gives

$$(\alpha^2 + 4)g(A\xi_{\mu}, \phi_{\lambda}\xi) = \alpha g(A^2\xi_{\mu}, \phi_{\lambda}\xi) = \alpha^2 g(\xi_{\mu}, A\phi_{\lambda}\xi) - 4g(\xi_{\mu}, A\phi_{\lambda}\xi).$$

From this it follows that

$$(4.8) 8g(A\xi_{\mu}, \phi_{\lambda}\xi) = 0.$$

Summing up (4.7) and (4.8), we conclude that

$$g(A\xi_{\mu}, X) = 0$$

for any $X \in \mathfrak{D}$. That is, $g(A\mathfrak{D}, \mathfrak{D}^{\perp}) = 0$. This completes the proof of our Proposition 4.2.

By Proposition 4.2 and a theorem due to Berndt and Suh [3] we know that M is congruent to a tube over a totally geodesic and totally real quaternionic projective space QP^n , n = 2m, in $G_2(\mathbb{C}^{m+2})$.

It remains to check whether such kind of hypersurfaces satisfy *commuting* structure Jacobi operator or not.

Let us recall $R_{\xi} \circ \phi = \phi \circ R_{\xi}$ for $\xi \in \mathfrak{D}$ and ξ is principal. Then we have

(4.9)
$$\alpha(A\phi - \phi A)X = 4\sum_{\nu=1}^{3} \{\eta_{\nu}(\phi X)\xi_{\nu} - \eta_{\nu}(X)\phi\xi_{\nu}\}.$$

We introduce a proposition due to Berndt and Suh [3] as follows:

Proposition B. Let M be a connected real hypersurface of $G_2(\mathbb{C}^{m+2})$. Suppose that $A\mathfrak{D} \subset \mathfrak{D}$, $A\xi = \alpha \xi$, and ξ is tangent to \mathfrak{D} . Then the quaternionic dimension m of $G_2(\mathbb{C}^{m+2})$ is even, say m=2n, and M has five distinct constant principal curvatures

$$\alpha = -2\tan(2r)$$
, $\beta = 2\cot(2r)$, $\gamma = 0$, $\lambda = \cot(r)$, $\mu = -\tan(r)$

with some $r \in (0, \pi/4)$. The corresponding multiplicities are

$$m(\alpha) = 1$$
, $m(\beta) = 3 = m(\gamma)$, $m(\lambda) = 4n - 4 = m(\mu)$

and the corresponding eigenspaces are

$$T_{\alpha} = \mathbb{R}\xi$$
 , $T_{\beta} = \Im J\xi$, $T_{\gamma} = \Im \xi$, T_{λ} , T_{μ} ,

where

$$T_{\lambda} \oplus T_{\mu} = (\mathbb{HC}\xi)^{\perp}$$
, $\mathfrak{J}T_{\lambda} = T_{\lambda}$, $\mathfrak{J}T_{\mu} = T_{\mu}$, $JT_{\lambda} = T_{\mu}$.

In Proposition B we consider a vector $X \in T_{\lambda}$ such that $AX = \lambda X = \cot rX$. From this we have

$$\alpha(A\phi X - \phi AX) = \alpha(\mu - \lambda)\phi X = 0.$$

This means $\cot^2 r + 1 = 0$, which makes a contradiction. So a real hypersurface M in $G_2(\mathbb{C}^{m+2})$ with commuting structure Jacobi operator does not exist. From this we give a complete proof of our theorem in the introduction.

Remark 4.1. A tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ in Theorem A has commuting shape operator on the distributions \mathfrak{D} and \mathfrak{D}^{\perp} . Of course, it is Hopf and naturally in Section 3 we have asserted that such a hypersurface satisfy $R_{\xi} \circ \phi = \phi \circ R_{\xi}$.

Remark 4.2. A tube over a totally real totally geodesic $\mathbb{Q}P^n$ in $G_2(\mathbb{C}^{m+2})$ has not commuting shape operator on the distributions \mathfrak{D} and \mathfrak{D}^{\perp} . In Section 4 we have proved that such a hypersurface is Hopf but can not satisfy $R_{\xi} \circ \phi = \phi \circ R_{\xi}$.

Acknowledgments. The present authors would like to express their sincere gratitude to the referee for his careful reading of our manuscript and useful comments.

References

- D. V. Alekseevskii, Compact quaternion spaces, Funkcional. Anal. i Priložen 2 (1968), no. 2, 11–20.
- [2] J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419 (1991), 9-26.
- [3] J. Berndt and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monatsh. Math. 127 (1999), no. 1, 1-14.
- [4] _____, Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians, Monatsh. Math. 137 (2002), no. 2, 87-98.
- [5] U.-H. Ki, J. D. Pérez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator, J. Korean Math. Soc. 44 (2007), no. 2, 307–326.

- [6] M. Kimura, Correction to: "Some real hypersurfaces of a complex projective space" [Saitama Math. J. 5 (1987), 1-5.] Saitama Math. J. 10 (1992), 33-34.
- [7] J. D. Pérez, On certain real hypersurfaces of quaternionic projective space, II. Algebras Groups Geom. 10 (1993), no. 1, 13-24.
- [8] J. D. Pérez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ-parallel, Differential Geom. Appl. 22 (2005), no. 2, 181-188.
- [9] _____, Real hypersurfaces in complex projective space whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 3, 459-469.
- [10] J. D. Pérez and Y. J. Suh, Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_i} R = 0$, Differential Geom. Appl. **7** (1997), no. 3, 211–217.
- [11] Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, Bull. Austral. Math. Soc. 67 (2003), no. 3, 493-502.
- [12] _____, Real hypersurfaces in complex two-plane Grassmannians with commuting shape operator, Bull. Austral. Math. Soc. 68 (2003), no. 3, 379-393.
- [13] _____, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator. II, J. Korean Math. Soc. 41 (2004), no. 3, 535-565.
- _____, Real hypersurfaces in complex two-plane Grassmannians with vanishing Lie derivative, Canad. Math. Bull. 49 (2006), no. 1, 134-143.
- ____, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math. 147 (2006), no. 4, 337-355.

Young Jin Suh DEPARTMENT OF MATHEMATICS KYUNGPOOK NATIONAL UNIVERSITY TAEGU 702-701, KOREA E-mail address: yjsuh@knu.ac.kr

HAE YOUNG YANG DEPARTMENT OF MATHEMATICS KYUNGPOOK NATIONAL UNIVERSITY Taegu 702-701, Korea

E-mail address: yang9973@naver.com