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COMPLEX SCALING AND GEOMETRIC ANALYSIS
OF SEVERAL VARIABLES

KANG-TAE KiM AND STEVEN G. KRANTZ

ABSTRACT. The purpose of this paper is to survey the use of the im-
portant method of scaling in analysis, and particularly in complex anal-
ysis. Applications are given to the study of automorophism groups, to
canonical kernels, to holomorphic invariants, and to analysis in infinite
dimensions. Current research directions are described and future paths
indicated.

0. Preliminary remarks

It is a classical fact that there is no Riemann mapping theorem in the func-
tion theory of several complex variables. Indeed, H. Poincaré proved in 1906
that the unit ball B = {z = (21,22) € C? : |2| = ¢/|z1]? + |22]? < 1} and the
unit bidisc D? = {z = (21,22) € C? : |z1] < 1,]22| < 1} are biholomorphically
inequivalent. More recently, Burns, Shnider, Wells [12] and Greene, Krantz [35]
have shown that two smoothly bounded, strongly pseudoconvex domains (def-
initions to be discussed below) are generically biholomorphically inequivalent.
In particular, if one concentrates attention on smoothly bounded domains that
are near the unit ball in some reasonable metric then, with probability one,
two randomly selected domains will be biholomorphically inequivalent. Thus
one seeks substitutes for the Riemann mapping theorem. In particular, one
seeks to classify domains in terms of geometric invariants. Work of Fefferman
[28], Bell [6], Bell, Ligocka [7], and others has shown us that a biholomorphic
mapping of a reasonable class of smoothly bounded domains will extend to
smooth diffeomorphism of the closures.

Received November 21, 2007.

2000 Mathematics Subject Classification. Primary 32MO05; Secondary 32M17, 32M25,
32E05, 32E40, 32T05, 32T25.

Key words and phrases. automorphism group, scaling, pseudoconvexity, finite type,
isotropy group, orbit, domain.

First named author’s research is supported in part by the Grant R01-2005-10771-0 from
the Korea Science and Engineering Foundation.

Second author has been supported by a grant from the National Science Foundation
(U.S.A.) and a grant from the Dean of Graduate Studies at Washington University {St.
Louis, Missouri, U.S.A.).

©2008 The Korean Mathematical Society
523



524 KANG-TAE KIM AND STEVEN G. KRANTZ

Thus it is possible, at least in principle, to carry out Poincaré’s original
program of determining differential biholomorphic invariants on the boundary.
Chern and Moser [18] did the initial work in this direction. (See also [96].)
More recent progress has been made by Webster [97], Moser [85] and [86],
Moser, Webster [87], Isaev, Kruzhilin [48], and Ejov, Isaev [26]. Another di-
rection, also inspired by Poincaré’s work, is to study the automorphism group
of a domain. This is a natural bihclomorphic invariant, and reflects the Levi
and Bergman geometry of the domain in a variety of subtle and useful ways.
The purpose of this paper is to develop some techniques connected with the
study of automorphism groups of bounded domains in C**!. In particular, we
wish to focus attention on a powerful technique that has become central in the
subject. This is the method of scaling. A special case of a general technique
in differential geometry known as flattening, scaling is a method for localizing
analysis near a boundary point. This method has been used with considerable
effectiveness to study not only automorphism groups ([91], [30], [36]) but also
canonical kernels ({88], [67]) and other aspects of classical function theory. The
papers [17], [19], and [29] (among many others in the literature) use scaling
methods. Certainly the papers [81]-[84] are relevant here as well. Scaling is
a far-reaching methodology that has potential applications in many parts of
mathematics. We exhibit in this article several different contexts and applica-
tions in which the scaling point of view is useful. For our purposes, the theory
of automorphism groups is a convenient venue in which to showcase the scaling
technique. But it should be of interest to mathematicians with many diverse
interests.

It is a pleasure to thank Eric Bedford, John D’Angelo, and Jeff McNeal for
a careful reading of an earlier draft of this paper. Their perspicacious remarks
helped to sharpen our focus and increase our accuracy.

1. Introduction

By a domain, we mean a connected open subset in C**! for some non-
negative integer’ n. Throughout this paper, we shall use z = (29,21, ..., 2,)
for the coordinates of a point in C**+1.

Let © be a domain. If its boundary J< is a regularly imbedded C*-hyper-
surface (k > 2), then there exists a C* smooth function p : C**! — R such
that

(i) Q={zeCr:p(») <0}

(ii) Vp(p) # 0 whenever p € 99Q.

In such a case, §2 is called a domain with C* smooth boundary. In turn, p is
called a C* smooth defining function for Q. Now fix a domain Q C C**+! with
C? boundary and defining function p. Let p € 8Q. We say that w € C**! is a

1t seems notationally convenient in this study to treat domains in C**? rather than C".
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complex tangent vector to OQ at p if

We write w € T,(0Q). [Observe that w is a real tangent vector, which is the

classical notion of tangency from differential geometry, if Re ;;0 %(p)wj =

0. We write in this case w € T,(9€2).] The complex normal directions are the
directions in T,(0Q) which are complementary to 7p(89).
We say that 0Q is (weakly) Levi pseudoconvex at p if

(*) Z 82 az ijk =0
J

for every complex tangent vector w at p. The point p is strictly or strongly
pseudoconver if the inequality in (x) is strict whenever 0 # w € 7,(0Q). If
each point of 9§ is pseudoconvex, then the domain is said to be pseudoconvex;
if each point of 81 is strongly pseudoconvex, then the domain is said to be
strongly pseudoconvex. We note in passing that there is a more general notion
of pseudoconvexity due to Hartogs, and which utilizes the theory of plurisub-
harmonic functions. We shall have no use for that concept here, but see [66].
It is worth noting (see [66]) that if p € 9Q is a point of strong pseudoconvexity,
then there is a choice of defining function p so that

n 82~

for every w € C**1\ {0} (not just the complex tangential w). In fact one may
go further. There is a biholomorphic change of coordinates in a neighborhood of
p so that the boundary near p is strongly convez. This means that, identifying

zj = tgj-1 + itz5, and choosing an appropriate defining function p, we have

2n pd
> 2 e >0
a i QL
3
Pl 8t]6t
for every non-zero real vector a = (a—1,ag,...,a2,).

2. The lore of automorphism groups

Let Q C C"*! be a domain. The automorphism group of Q is the collection
of one-to-one, onto holomorphic mappings ¢ : @ — Q. It is known that the
inverse p~! is automatically holomorphic. See [66]. Such a mapping is also
called a biholomorphic self-map of Q. With the binary operation of composition
of mappings, the collection of automorphisms forms a group. We denote this
group by Aut(2). We equip the automorphism group with the topology of
uniform convergence on compact sets, equivalently the compact-open topology.
If we restrict attention to bounded domains—and in this paper we, for the
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most part, do just that—then the group Aut(Q) is in fact a real Lie group
(this follows from work of H. Cartan—see [63]). It is never a complex Lie
group unless it is discrete. Of special interest are domains having a large
or robust group of automorphisms. It is known (see [12], [35]) that strongly
pseudoconvex domains which are rigid—i.e., which have no automorphisms
except the identity—are generic. On the other hand, every compact Lie group
arises as the automorphism group of some bounded, strongly pseudoconvex
domain with real analytic boundary (see [3], [93], [38], and [99]). It seems
natural, for example, to study a domain with transitive automorphism group—
this is a domain  with the property that if P,@Q €  are arbitrary then there
is an automorphism ¢ of £ such that ¢(P) = Q. It turns out that the list of
such domains is rather restrictive; our knowledge of such domains is essentially
complete (see [42], [46]).? Perhaps geometrically more natural is to consider
domains with noncompact automorphism group. A very natural and useful
characterization of such domains is contained in the following classical result
of Cartan (for which see [89)]):

Proposition 2.1. Let Q C C™"! be a bounded domain with noncompact auto-
morphism group. Then there are a point p € 0%, a point g € §1, and automor-
phisms p; € Aut(Q) such that ¢;(g) — p as j — co. (See Figure 1.)

Figure 1

The point p in the proposition is called a boundary orbit accumulation point.
It is known, in a variety of concrete senses, that the Levi geometry of a bound-
ary orbit accumulation point says a great deal about the domain itself. See
[39], [40]. It is a matter of great interest today to classify all possible boundary
orbit accumulation points. An important focus of our studies will be (bounded)
domains in C™*! with noncompact automorphism group and their boundary
orbit accumulation points. Much is known today about automorphism groups
of domains. In classical studies, mathematicians calculated the automorphism
groups of very particular domains rather explicitly (see, for instance, the dis-
cussion in [66] as well as [44]). Today we have more powerful machinery (the

2In fact the only strongly pseudoconvex domain with transitive automorphism group is
biholomorphic to the ball. This remarkable fact will be discussed below.
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O-Neumann problem, sheaf theory, Levi geometry, Lie group methods, tech-
niques of Riemannian geometry, Kéhler theory) that allow us to make quali-
tative studies of broad classes of domains. The papers [37] and [47] provide a
broad overview of the types of results that can be proved with modern tech-
niques. The present paper will introduce the reader to some of the main themes
in the subject.

3. The dilatation and scaling sequences

At this stage, we shall only consider the case when the boundary 02 is C k
smooth, with & > 2, in an open neighborhood of p € Q. Let ¢* = (q},...,q%)
be a sequence of points in the closure { of the domain  that converges to the
boundary point p = (po,...,Pn)-

3.1. Pinchuk’s dilatation sequence

We refer to the source [91] for basic ideas about Pinchuk scaling. Applying
a holomorphic coordinate change and the implicit function theorem at p, we
may assume that p is the origin and the domain 2 is represented in an open
neighborhood of the origin by (i.e., has a defining function given by) the defining
inequality
Rezo > ¥(Im zg, 21, - .., Zn),
where:
(i) v eC¥,
(i1) ¥(0,...,0) =0, and
(i) Vilo,..0) = (0., 0).
We take (~1,0,...,0) to be the unit outward normal vector at p. Now
choose the boundary points p* = (p§, ..., p%) satisfying
(i) pf = g forevery j=1,...,n, and
(i) g —p >0
for every v = 1,2,.... Observe that each p” is uniquely determined by these
conditions. See Figure 2.

(Im 2091215 o "ZTL)

R,§ Zo

Re zp = ¥(Im 2g,21,..-,2n)

Figure 2: A scaling sequence
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Then consider the map A, : C"*! — C"*! defined by ¢ = A4,(z) in local
coordinates with the explicit expression

n+1
G = ag(zo—pf) =D oz —p))
Jj=1
G = a—pf
Gn = 2zn— pyul .
See Figure 3.
4
A,(10,)
Re 20 A,,(p ) A,,(q ) Re 20
=0
~ .
Figure 3: The Centering Process
Here the complex constants af,...,a; are chosen so that of — 1 and
b — 0asv — oo for m = 1,...,n, and such that the domain A,(Q) is

represented in a neighborhood of the origin by a new C* defining inequality

ReCO > \Iju(Im CO:Cl) o CQ)

satisfying
v,(0,...,0) =0 and V¥,|, = (0,...0).

The next step is to consider a sequence of linear maps L, : C**1 — Cnt!

defined by
CO Cl Cn
Lu(COw--aCn) = <—Xg’3\?77;\—;{> )
where
Ao =4 — Py
for each v = 1,2,.... The sequence of complex affine mappings A, := L, 0 4,
is the dilatation sequence introduced® by S. Pinchuk. The choice of Ay, ... A

is an important step in the setup of the dilatation sequence. However, for the
sake of smooth exposition, it seems the best to postpone the explication until

3Pinchuk originally named it the stretching coordinates.
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we handle the Wong-Rosay Theorem (our first important application) a bit
later in the paper. It should be noted that Pinchuk’s dilatation sequence can
be defined for a domain with boundary that is not necessarily smooth near the
reference boundary point p.

3.2. Pinchuk’s scaling sequence with automorphisms

Let © be a domain in C™*! with C*-smooth boundary 89, k > 2. Let
p be a boundary point and ¢” be a sequence of points in Q converging to p
as v tends to infinity. Here we consider the important special case when the
sequence ¢” is given by ¢” = ¢, (q), where ¢ is a point in 2 and where ¢, is
a holomorphic automorphism of Q for each v = 1,2,.... Let the dilatation
sequence A, : @ — C™*! be as above, associated with the point sequence ¢*.
Then the scaling sequence introduced by S. Pinchuk is the following sequence
of maps:

o, =M, 00, :Q— CV

Once the sequence ¢, of automorphisms of £ and a point g € £ is given, the
orbit ¢, (q) and the affine adjustments A, , which we call the centering maps, are
defined. The only part of the scaling that needs to be chosen is the sequence of
dilating linear maps L,. The crux of the matter is to choose L, appropriately
so that

(i) the o, form a pre-compact normal family, and
(ii) asubsequential limit, say 7, defines a holomorphic embedding of  into
crth
We shall see how such a simple idea produces significant results in the subse-
quent sections. On the other hand, it is not known whether such a choice is
always possible so that the scaling sequence converges.

3.3. Frankel’s scaling sequence

Before discussing the effect of the scaling method, it should be mentioned
that there is another way of constructing a scaling sequence. With the same ¢,
and ¢ as above, S. Frankel in his Ph. D. dissertation introduced the sequence

wy(2) = [don(9)] ™ (90 (2) = pu ().

Notice that each w, embeds € into C"*!. From the viewpoint of Pinchuk’s
scaling, one may see that the differences between the two scaling methods are:
(1) that the reference points ¢, (g) are in the interior of {2, and (2) that the
sequence dp,(gq)~! replaces the role of centering followed by dilation. In the
scaling methods, the most delicate and important issues lie in the convergence
of the scaling sequence to a biholomorphic embedding of the domain. One
would also like to be able to guarantee that the limit mapping is injective. In
the ensuing discussion we shall invoke the notion of Kobayashi hyperbolicity.
This is an invariant version of the idea of boundedness. A domain Q or, more
generally, a complex manifold is Kobayashi hyperbolic if the Kobayashi distance
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(see [66]) is positive on 2. The collection of Kobayashi hyperbolic manifolds is
broad. For example, any bounded domain is hyperbolic. Moreover, the upper
half-plane {z € C | Imz > 0} and the Siegel upper half-space {z € C"*! |
Imzo > [21/* + - -+ + |za|*} are Kobayashi hyperbolic.

Theorem 3.1 (Frankel [30]). Let Q be a convez, Kobayashi hyperbolic domain
in C"*1. For any sequence v, of automorphisms of ) and a point q € Q, the
sequence of maps defined by

wi(2) = [dpu (@)] 7 (0 (2) - wu(a)
forms a pre-compact normal family, in the sense that its every subsequence has
a subseguence that converges uniformly on compact subsets of 2. Moreover,
every subsequential limit is a holomorphic embedding of Q into C*+1.

Notice that, from the viewpoint of this article at least, this theorem is most
interesting when ¢, (q) accumulates at a boundary point. On the other hand, it
turns out, due to work of Kim and Krantz [53], that Pinchuk’s scaling sequence
can be selected to have the same conclusion in case the domain is convex as
in the hypothesis of this theorem. Furthermore, the two scaling methods are
indeed equivalent. More precisely the following has been shown in [53):

Proposition 3.2. In addition to the hypothesis of Frankel’s theorem above,
assume that the sequence ,(q) accumulates at o boundary point of ) as v —
oo. Let o, denote Pinchuk’s scaling sequence. Then we have the following
conclusion:
(i} Fvery subsequence of oy, admits ¢ subsequence that converges uniformly
on compacta to an injective holomorphic mapping of Q into C”HA.
(i) Let Q2 denote the limit domain of the Frankel scaling, and let §) the
limit domain of the Pinchuk scaling. Then these two domains are bi-
holomorphic to each other by a complex affine linear map.

It may be noted that the papers [81]-[84] use techniques that relate to
Pinchuk and Frankel scaling.

3.4. Normal convergence of sets

We present the concept of Carathéodory kernel convergence of domains
which is relevant to the discussion of scaling methods and general normal family
of holomorphic mappings. For more detailed discussions on this convergence,
see p.76 of [25].

Definition 3.3 (Caratheodory Kernel Convergence}. Let £, be a sequence of
domains in C™*! such that p € (oo, Q. If p is an interior point of (7o, 2.,
the Carathéodory kernel Q at p of the sequence {2, } is defined to be the largest

domain containing p having the property that each compact subset of Q lies
in all but a finite number of the domains £2,,. If p is not an interior point of

" o2 2, then the Carathéodory kernel Q0 is {p}. The sequence 2, of domains
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is said to converge to its kernel at p if every subsequence of {2, has the same
kernel at p.

We shall also say that a sequence 0, of domains in C**! converges normally
if there exists a point p € {)o_; €, such that £, converges to its Carathéodory
kernel at p.

The motivation for this notion can be seen in the following proposition. We
omit the proofs, as they are routine.

Proposition 3.4. Let Q, form a sequence of domains in C**! that con-
verges normally to the domain Q. Let W € C™ be a Kobayashi hyperbolic
domain. Then every sequence of holomorphic mappings f, : Q, — W contains
o subsequence that converges uniformly on compacta to a holomorphic mapping
f: Q- W. Furthermore, if {g, : W — Q,} forms a pre-compact normal
family, then every subsequential limit, say g, has its image contained in the
closure of Q.

It may be appropriate to remark that the topological set convergence such
as a version of local Hausdorff convergence can replace the normal convergence
in case the domains in consideration are convex domains.

4. Domains with noncompact automorphism group
4.1. The theorem of Bun Wong and Jean-Pierre Rosay

Theorem 4.1 (Wong [100], Rosay [92]). Let Q be a bounded domain in C"*?
with a sequence of automorphisms @, and a point q € Q such that Hm, . ¢, (q)
= p for some p € Q. If 00 is C? strongly pseudoconvez in a neighborhood U
of p, then Q is bikolomorphic to the unit open ball B in C"*1.

Theorem 4.2 (Wong [100]). Every smoothly bounded domain in C™t1 with
transitive automorphism group is biholomorphic to the unit open Fuclidean ball
in C*t1,

Proof of the Wong-Rosay Theorem by the Meihod of Scaling. This proof is es-

sentially due to S. Pinchuk. It consists of four typical steps for a scaling proof:
(1) preparation, (2) localization, (8) dilatation, and (4) synthesis.

Step 1. Preparation. Without loss of generality, let us assume that p is
the origin 0 in C™*!. Since (2 is strongly pseudoconvex at the origin, we may
perform a holomorphic coordinate change at the origin so that in an open Eu-
clidean ball B(0,10r) of radius 10r centered at the origin, the set 2N B(0, 107)
can be defined by an inequality*

p(z) <0

4This is a concrete implementation of the statement, discussed earlier, that a strongly
pseudoconvex point may be convexified by a biholomorphic mapping.
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where
p(z) = —Rezo + |z0/* + -+ + |za|* + R(2)
and (using Landau’s notation)

R(z) = o(|zol* + - + |znl*)-

In particular, choosing r > 0 smaller if necessary, we may arrange that
1
|R(2)| < Z(12«012 + -+ |2,|%) V2 € B(0,2r)

and that the boundary 992 is now strongly convex in B(0, 2r).

It may be appropriate to remark at this juncture that a C* smooth, strongly
pseudoconvex boundary has a 4-th order contact with a sphere. {See Fefferman
[28], and also [43].)

Step 2. Localization. As a consequence of the preceding step, we see that
there exists a holomorphic function h : B(0,2r) — C such that

h(0) = 1 and |h(¢)| < 1 for every ¢ € QN B(0,2r) \ {0}.

Now look at the automorphisms ¢, of Q. Since {2 is a bounded domain, ev-
ery subsequence of ¢, admits a subsequence that converges to a holomorphic
mapping from ) into the closure Q of , uniformly on compact subsets. Let
® be a subsequential limit of a subsequence ¢,,. Since ®(g) = 0 and since
® : Q — O is holomorphic, we may exploit the uniform convergence on com-
pact subsets to see that there exists a relatively compact neighborhood U, say,
of ¢ such that ¢,, (U) C B(0,2r) N for all sufficiently large k. Then consider
hogylv : U — D, where D denotes the unit disc. This yields now that
ho®(0) = 1. Hence the Maximum Modulus Principle implies that ®(z) = 0
for every z € U. Since U contains a non-empty open set, we conclude that
® vanishes identically in 2. We may now deduce, replacing {¢,} by one of
its subsequences, that for every compact subset K of § there exists a positive
integer N such that
v, (K) C B(0;r)NQ

whenever v > N,

Step 3. Dilatation. Consider now the sequence ¢, (q) in Q. Let ¢V = ¢, (q)
for each v. Choose the boundary point p” as in the construction of Pinchuk’s
dilatation sequence above. Then choose the centering map A, and the dilation
map L, as above for each v. We may examine Pinchuk’s dilatation sequence
A, :=L,0A,. It is a simple matter to check that the sequence of domains
A, (2N U) converges normally to the domain

V={(z0,...,22) €C" :Rezp > |21 + -+ - + |2a[*}

Moreover, one may replace ,, by a subsequence again to have that A, (QNU) C
£ for every v sufficiently large, where £ = {(zp,...,2,) € C**! : Rezg >
31zl + -+ |2}
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Step 4. Synthesis via normal families. Take a sequence W, of relatively
compact subdomains of €} satisfying

W, C Wyq1 forevery v = 1,2,...

and
%)
Uw. =q
v=1

Consider now the scaling sequence o, = A, o ¢,. Choosing a subsequence, we
may assume that

v, (W,) C QN B(0,r)

for every v = 1,2,.... Then by the preceding step, the scaling sequence
o, = A, 0@, |w, forms a normal family for every u as ¥ — oo. Notice also
that, for every compact subset K’ of V, the sequence o, ! maps K’ into Q for
sufficiently large v. Altogether, one sees that any subsequential limit of the
scaling sequence becomes a biholomorphic mapping from Q onto V. Since V
is biholomorphic to the unit open ball, the theorem is now proved. D

4.2. Domains with piecewise Levi-Flat boundary that possess non-
compact automorphism group

The main theorem of this section is the following:

Theorem 4.3 (Kim-Krantz-Spiro [55]). Every generic analytic polyhedron in
C? with noncompact automorphism group is biholomorphic to the product of
the unit open disc in C and a Kobayashi hyperbolic Riemann surface embedded
in C2,

A clarification of some terminology is in order. By an analytic polyhedron
in C"*!, we mean a bounded domain, say  in C**!, admitting an open
neighborhood U of the closure Q of € and a finite collection of holomorphic
functions f; : U — C, j=1,..., N, such that

Q={zeU:|fi(z)] <1,...,|fn{2)] < 1}.

The collection {f1,..., fn} is usually called a defining system for 2. The choice
for defining system is not unique. An analytic polyhedron is called generic (or,
normal), if it admits a defining system {fi,..., fx} satisfying the following
additional condition:

dfiilp A=+ Adfilp #0

whenever the condition |f;, (p)] = -+ = | fi.(p)] = 1 holds for any un-repeated
indices i1,...,ix € {1,...,N}. We restrict our attention as usual to the
bounded analytic polyhedra. By a theorem of H. Cartan mentioned earlier,
the automorphism group of our analytic polyhedron is a finite-dimensional Lie
group. The non-compactness of the automorphism group is therefore equiva-
lent to the existence of a sequence v, € Aut 2 and a point ¢ € £ such that
the point sequence ¢, (q) accumulates at a boundary point.
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Notice that Theorem 4.3 improves the following results:

Theorem 4.4 (Kim and Pagano [58]). Let Q be a generic analytic polyhedron
in C? with noncompact automorphism group. Then the holomorphic universal
covering space of § is biholomorphic to the bidisc.

It is worth mentioning the following theorem. It concerns only convex ana-
lytic polyhedra, but is valid in all dimensions.

Theorem 4.5 (Kim [49]). Every convez generic analytic polyhedron in C™*!
with noncompact automorphism group is biholomorphic to the product of the
unit open disc in C and a convex domain in C™. In particular, in case n =1,
the product domain is biholomorphic to the bidisc.

Sketch of proof. We treat all three theorems simultaneously. Let £ be a generic
analytic polyhedron in C™*! with noncompact automorphism group. Then
there exist a boundary point p € 982, an interior point ¢ € Q and a sequence
¢; € Aut Q such that lim; . p;{g) = p. Since the boundary of Q is piecewise
Levi flat, we divide the proof of each theorem above into the following two
cases: (1) the case that boundary 09 is singular at p, and (2) the case that
boundary 0f2 is smooth and Levi flat in a neighborhood of p.

Case 1. The boundary 01 is singular at p.

Recall that our domain is a generic analytic polyhedron. In complex dimen-
sion 2, therefore, it is possible to choose a defining system f1,..., fx such that
there exist exactly two functions, say fi, f> (shuffling the indices if necessary),
such that |fi{p)| = |fi(p)] = 1 with dfi], A df2|, # 0. Hence it is simple to
realize that there exists a plurisubharmonic® function 1 defined in an open
neighborhood of the closure of { such that

¥(p) =0, and ¥(2) < 0 for every z € O\ {p}.

Such a function is called a plurisubharmonic (psh for short) peak function for Q
at p. The maximum modulus principle immediately implies in particular that
there are no non-trivial analytic varieties in §{0 passing through p. Moreover,
it is known that the following localization principle holds (see [8], and also [16]
for detailed arguments, for instance):

Let U be an open neighborhood of p. For every compact subset K of Q}, there
exists a positive integer jx such that ;(K) C U for every j > jk.

Now, using the mapping (fi, fo) : U — C? followed by a linear fractional
mapping of C?, one can construct a biholomorphism-into ¥ : U — C? with
U(p) = (0,0) and T(UNQ) = ¥(U) NH? where

H? = {(20,21) € C? : Rezy > 0,Rez; > 0}.
Let us write ¥(p;(q)) = (t;,0,t;,1). Then consider the dilatation sequence

5A real-valued continuous function 7P : 2 — R defined in a domain § in C” is called
plurisubharmonic if it is subharmonic when restricted to any complex affine line. See [66].



COMPLEX SCALING AND GEOMETRIC ANALYSIS OF SEVERAL VARIABLES 535

Zo—-Imt‘o zl—Imt~1
Az ,21) = Js , 2
3( 0 1) ( Reij’o Reij,l
Finally, consider the scaling sequence
gji=A;0¥o0yp;

for j =1,2,.... It still requires some checking, but it follows that a subsequen-
tial limit of this sequence gives rise to a biholomorphic mapping from € onto
the domain H? which is in turn biholomorphic to the bidisc. Thus Theorems
4.3 and 4.4 are proved in this case. For Theorem 4.5, one takes into consider-
ation that Q is a convex domain in C"*1. Note that every complex analytic
variety contained in a convex Levi-flat hypersurface is an open subdomain of a
complex affine hyperplane. Now choose a defining system fo, ..., fa so that

fﬂ(p) == fk(p) =1, ‘fk—f—l(p}I <l,..., IfN(p)' <1
and
dfilp A- - Adfylp # 0.

The maximal variety in the boundary of Q passing through p is represented by

Vi={z€C"  fo(z2) == fiz) =1, fir(2)] <1,....1fn(2) < 1}.

Notice that dimcV, = n — k. It is possible that n = k, and consequently
that V;, is a single point. But it is always the case that £ > 0. Then one may
use the mappings fg,. .., fr to see that there exists an open neighborhood, say

W, of V}, such that there exists a holomorphic embedding ¥ : W — C**! such
that

(a) T(Vp) ={(0,...,0; 2k41,- -, 20) € C"L: (241, .., 2n) € '}, where
' is a convex domain containing the origin in C*~*, and
(b) $(WNQ)=T(W)NU where

U={2€C"™ :Rez >0,...,Rez >0, (2k+1,---52n) €V}

Write ¥ 0 @;(g) = (¢5,0,-..,t;n) and then consider the dilatation map

Z()—h‘ntjg Zk—Imtjk
riz) = — .. —:z veesZn )
j( ) ( Retj'() ) s Ret‘j,k y “k+1, ) 4n

Again it follows that a subsequential limit of the sequence

o :=Ajo¥oy;

gives rise to a biholomorphic mapping from £ onto U which in turn is biholo-
morphic to the product of a k + 1 dimensional polydisc and the domain Q' in
C"~*. This proves Theorem 4.5 in the present case.

Case 2. The boundary 0! is smooth and Levi flat at p.

This case is easier to handle when €} is convex, even when diment E =n+1
for an arbitrary non-negative integer n. Consider the maximal variety V, in
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the boundary 99 passing through p. As argued earlier, it follows that V, is a
convex, open subset of a complex affine hyperplane. By a complex affine linear
change of coordinates, say by an affine linear biholomorphism ¢ : C*t! —
C™*1, we may assume that 1 (p) = 0, that ¥(V,) C {(20,...,2n) : 20 = 0} and
that the domain Q at p is contained in the half-space defined by the inequality
Rezp > 0. Now we apply the scaling method as before. Let 1 o ¢;(g) =
(tj.0,.,t5n). Then define the dilatation mapping by

zo — Imt;
Aj(zlJ?"';zn) = (m}—o,zl,m,zn).
7,

Then it turns out that the scaling sequence
g F = A;P o 7/} O Py
yields a subsequential limit which becomes a biholomorphic mapping from £

onto the product of the upper half plane in C and the n-dimensional convex
domain C™*!. This completes our sketch of the proof to Theorem 4.5. O

In case the analytic polyhedron is merely generic, and not necessarily convex,
the situation is much more complicated. Thus it is natural that one focuses on
the case of complex dimension two.

Then the maximal variety V,, is a Riemann surface that is Kobayashi hyper-
bolic. The uniformization theorem of Riemann surface theory yields a holo-
morphic covering map 7 : D — V, from the open unit disc D in C onto Vj,.
Then extend it trivially to the map 7{(z1, 22} = (7(21), 22). Since the normal
bundle for V,, in C? is trivial, one may take an open neighborhood U for V, in
C™*! in such a way that QN U is connected and that 7 gives rise to a local
biholomorphism, say 7, from an open neighborhood of D x {0} onto U. One
can arrange also that 7(0,0) = p.

Then consider the domain ﬁloc which is a connected component of 7~ (QNU)
containing the origin. Then take a lifting of the sequence ¢;(q) via 7. There
are many liftings. Choose therefore one that converges to the origin (0,0) for
instance. Now build a dilatation mapping A; for ﬁ, formally the same as in
the convex case (with an adjustment; see [55] for details), with respect to the
sequence chosen here. Then it turns out that the sequence of mappings

gej_l oo A,
yields a subsequential limit, say ¥, from the product D x H of the open unit
disc D and the half-plane H = {z € C : Rez > 0} onto our generic analytic
polyhedron €. Using normal families arguments, it is not hard to deduce
that ¥ is a holomorphic mapping with its Jacobian vanishing nowhere on D x
H. Moreover, it turns out that this map preserves the Kobayashi-Royden
infinitesimal metric. Therefore it preserves the Wu metric (see below) as well.

The Wu metric (see [101]) here can be quickly understood as follows. At
each point p of a Kobayashi hyperbolic domain G in C**!, consider the tangent
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space 1,G and the collection of vectors with Kobayashi length not exceeding 1.
This set is sometimes called the Kobayashi indicatrix at p. Endow T,G with
an arbitrarily chosen Hermitian inner product. (This choice of Hermitian inner
product is neither unique nor natural, but it will not cause any problems at
the end.) Then consider the ellipsoids, say F = Ep, in T,G(= C"*!) given by

Eyg ={veC" . v*Hv <1},

where H is a positive definite Hermitian (n + 1) x (n + 1) matrix and where
¢* denotes the conjugate transpose of v. Denote by Q the set of such £y
containing the Kobayashi indicatrix. Then take 1/(det H) as the volume of
Ep. Then it turns out that the element in @ with the smallest volume is
uniquely determined, regardless of the choice of the Hermitian inner product
on T,. See [101]. Now let this minimum volume ellipsoid define a Hermitian
inner product, say h,, on T,G. The assignment p +— h, defines the Wu metric
on G. It is immediate from the invariance of the Kobayashi metric that the
Wu metric is invariant under biholomorphic maps. It is obviously Hermitian,
in the sense that it defines a Hermitian inner product on each tangent space.
It has been shown that p — hy, is C° (continuous) in general.

Now since the Wu metric hpy p, say, of the bidisc D x D is real-analytic, so
are the Wu metrics hpyn of D x H and hq of €, respectively, since U, hpyxy =
hg. Since the Kobayashi metric of € is complete, so is the Wu metric hq.
At this point, one may apply the proof of the Cartan-Hadamard Theorem in
Riemannian Geometry to conclude that ¥ : D x H —  is indeed a covering
mapping. This yields Theorem 4.4,

Finally, for Theorem 4.3, one has to analyze the covering mapping ¥ as well
as its deck transformation group more precisely. Although we are omitting the
details here, it should not be difficult for the reader to see that the constructions
for © as well as 7 will reflect the nature of the covering map = : D — V,
without any essential changes. Hence it was shown in [55] through a careful
analysis that indeed 2 is biholomorphic to the product of the open unit disc
and the maximal variety V5, and that the deck transformation group I'y for
the covering mapping ¥ : D x H — Q is in fact I'; x {id}, where T'; denotes
the deck-transformation group for the uniformization map 7 : D — V. This is
how Theorem 4.3 follows.

Notice that this analysis gives a rather complete classification of complex
two-dimensional generic analytic polyhedra that possess noncompact automor-
phism group. Hence it seems appropriate to pose the following question here.

Problem 4.6. Classify all non-generic analytic polyhedra with noncompact
automorphism group.

The main difficulty in this problem seems to lie in the question of how to
adjust the scaling at a singular boundary point.
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4.3. Remarks on the concept of finite type

It is a straightforward calculation (see [66]) to see that a strongly pseudocon-
vex boundary point p is flat to order 2. That is to say, the maximum possible
order of contact of the boundary at p with a one-dimensional complex analytic
variety is 2. See Figure 4. It is useful in this subject to be able to generalize
this concept. For simplicity in this subsection we restrict our attention to two-
dimensional complex space. The entire story in all dimensions is sketched out
in [21]. See also [20]

Figure 4: The Order of Contact

Let 2 = {z € C**! : p(z) < 0} be a smoothly bounded domain and fix
a point p € 9. Let V be a nonsingular, one-dimensional complex analytic
variety that passes through p. Then the order of contact of V with 0Q at p is
the greatest positive integer k such that

()l < C |z ~plt

for z € V near p and some constant C > 0. We say that p is of finite geometric
type in the sense of orders of contact if there is an upper bound m on the order
of contact of analytic varieties with 9¢} at p. The least such integer m is called
the type of the point p. As previously noted, a strongly pseudoconvex point is
of type 2. As a very simple illustrative example, for k a positive integer let

Ep ={z=(21,22) € C?: |1 |* + |zo** < 1}.

Then one may calculate (again see [66]) that any boundary point of the form
(€%,0) is of finite type 2k. The notion of “type” is a means of measuring the
flatness of the boundary in a complex analytic sense.®

One of the most important facts about finite type in complex dimension
2 is that the geometric definition given here is equivalent to an analytic def-
inition involving commutators of vector fields. To wit, we may assume by a
normalization of coordinates that dp/821{p) # 0. Define the vector field

ap 0 Op )

L=5,9%, 5,95

61t is worth noting explicitly that, in complex dimension 2, we can measure the type of a
boundary point using the order of contact of smooth complex varieties of dimension 1. But,
in higher dimensions, work of D’Angelo [20] has taught us that we must examine singular
complex varieties as well.
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Then L is a tangential holomorphic vector field near p (because Lp = 0). A
first-order commutator is, for us, an expression of the form [L,_} = LL -
LL. A second-order commutator is the commutator of L or L with a first-
order commutator. And so forth. We say that p is of analytic type m if any
commutator of order not exceeding m — 1 has no complex normal component
but that some commutator of order m does have a complex normal component.
It is a basic result in dimension two (generalized to higher dimensions by Bloom
and Graham [9]) that the boundary point p is of finite geometric type m if and
only if it is of finite analytic type m.

One immediate consequence of this characterization is the semicontinuity of
type: If p € 0Q C C? is a point of finite type m, then there is a small boundary
neighborhood U of p so that all point of U are of finite type not exceeding m. In
complex dimensions greater than 2, this semicontinuity of type (as stated here)
fails; but type is locally bounded. A substitute result was proved by D’Angelo
in [20]. In any event, it follows from these results that if {2 is smoothly bounded
and if each point of 0Q is of finite type, then there is an upper bound M so
that the type of every boundary point does not exceed M.

In deep work [23], Diederich and Fornass showed that any bounded domain
with real analytic boundary, in any complex dimension, is of finite type. Thus
domains with real analytic boundary form an important class of examples in
this subject. (We recommend readers to read an alternative approach, with
a discussion of the relationship to type and subelliptic estimates for the 9
problem, in [20].) It is perhaps instructive to contrast such a domain with a
boundary that is Levi flat. Such a boundary is foliated by complex analytic
varieties, so that one sees immediately that each boundary point is of infinite
type. The provenance of the concept of finite type was the study of the 6-
Neumann problem (see [64]). Since that time, finite type has assumed a rather
prominent position in function theory, mapping theory, and related areas. See
[20] and [21] for a full account of this central idea. The reference [22] also has
many useful ideas.

4.4. A theorem of Bedford-Pinchuk

In the preceding sections, we discussed domains with noncompact automor-
phism group in the extreme cases when the boundaries are either strongly
pseudoconvex or Levi flat. The intermediate concept, called the boundary of
finite type in the sense of Catlin/Kohn/D’Angelo, encompasses a large class
of weakly pseudoconvex domains with smooth boundary. We now present the
following theorem pertaining to this class.

Theorem 4.7 (Bedford-Pinchuk [5]). A bounded domain @ C C? having real
analytic boundary and admitting noncompact automorphism group is biholo-
morphic to

E,, = {(z,w) € C?: |2[? + [w|* < 1}
for some positive integer m.
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In fact some unpublished remarks of David Catlin show that the hypothesis
“real analytic” may be weakened to “finite type”. It should be also mentioned
that Bedford and Pinchuk have extended the above theorem to broader classes
of domains. Before discussing the proof of this theorem, we remark that several
generalizations of this theorem have been carried out, mostly by Bedford and
Pinchuk. See [4], [5], [8] for precise results. In particular Bedford and Pinchuk
can prove results in higher dimensions with certain restrictions such as convex-
ity. However, we shall focus on the original proof, as it reflects the essential
methods for this case.

Sketch of the Proof of Theorem 4.7. The non-compactness of Aut  again im-
plies the existence of ; € Aut €2, p € 0 and q € Q2 such that lim;.oc ¢;{¢) =
p. Then one may choose a holomorphic local coordinate system (z,w) such
that p becomes the origin, and such that there exists an open neighborhood U
of the origin in which the domain Q is represented by the inequality

Rew > H(z) + R(z,w)
where:

(i) H(z) is a homogeneous subharmonic polynomial in z,Z of degree 2m
without harmonic terms. Here m is a positive integer, and

(ii) R(z,w) = o(|z|*™ + [Imw]).

Then it follows by a careful application of the scaling method that 2 is biholo-
morphic to the domain

M(Q,p) = {(z,w) € C? : Rew > H(z)}.

For a detailed argument a useful reference other than the original paper by
Bedford-Pinchuk is the theorem on p. 620 of [8] by Berteloot. At this juncture,
we simply use the fact that the mapping (z,w) — (z,w + it) is an automor-
phism of M (2, p) for every t € R. This produces a noncompact one-parameter
subgroup of automorphisms, say ¢, for Q. But then Bedford and Pinchuk
showed that there exists a boundary point p’ € 9§ such that

7

Jim u(z,w) = p

for every (z,w) € §). Furthermore they show that this turns into a smooth(!)
parabolic holomorphic vector field action at p’ on the boundary of Q. For
this arguments they exploit the extension theorem by Bell and Ligocka for
automorphisms.

The vector field obtained by

X .= 81/)1;(2, ’LU)
81: t=0

is a holomorphic vector field that vanishes at p’. Bedford and Pinchuk stud-
ies its expansion, and characterizes what the lowest order terms (in terms of
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appropriate weights) should be. This analysis allows them to see that the defin-
ing function for the domain near p’ has to take the form (after a holomorphic
change of coordinate system at p’)

|Z|2m

Rew = + terms with higher weights,

where p’ is now the origin.

Recall that the origin is an accumulation point of the automorphism group
orbit. Thus one can scaling the above expression of the local defining function.
After a scaling with some care, one can conclude that the original domain is
biholomorphic to the domain defined by

Rew = |z|®™.

This yields the desired conclusion via a Cayley type transformation. O

As one can see from the proof, the assumption that © has global smoothness
(indeed, real analyticity) and finite type is essential, as one does not know
where p’ will be located in Q. Attempts to obtain the same conclusion from
the weaker assumption that 9 is real analytic of finite type at the initial orbit
accumulation point p cannot be successful, as there are famous counterexamples
such as the one defined by Rezg > |21/® + #|21|*> Re 2¢, for instance ”.

5. The Greene-Krantz conjecture

The classification program for domains with noncompact automorphism
group is far from being complete, even for the case of very smooth, or piecewise
smooth, boundaries. On the other hand, it seems natural at this juncture to
mention the following outstanding conjecture by Greene and Krantz:

Conjecture 5.1. Let Q be a bounded domain in C™ ! with C*®° boundary. If
there exists a sequence ¢, of automorphisms of Q and a point ¢ € Q such that
the orbit ¢, (q) accumulates at a boundary point p of U, then p is of finite type
wn the sense of D’Angelo, Catlin, and Kohn.

The full conjecture is still open. The purpose of this section is to intro-
duce some partial results supporting the conjecture, discovered by means of
the scaling method. The first partial result we mention here is the following
reformulation of Theorem 4.5:

Proposition 5.2. Let Q2 be a bounded, conver domain in C*! with a boundary
point p € 0Q) admitting an open neighborhood U such that 00N U is Levi flat
at every point. Then no automorphism orbit of 0 can accumulate at p.

"This example indeed is the famous model by Kohn/Nirenberg [65], that cannot be made
convex by any holomorphic change of local coordinates at the origin. It should not be too
difficult to see that this domain cannot be biholomorphic to Rezp > {21|%, when one uses
reflection principles for instance.
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The basis for this proposition is as follows: If there were an automorphism
orbit accumulating at p, then Theorem 4.5 from the hypothesis implies that Q
is biholomorphic to the product of a convex domain and the open unit disc.
Therefore, {2 is a (trivial) fiber space over §2. A theorem of A. Huckleberry ([46])
says that this cannot be biholomorphic to a bounded domain with a strongly
pseudoconvex boundary point. Since any bounded domain with entirely smooth
boundary must admit® a strongly pseudoconvex boundary point, it leads us to
a contradiction. Thus the proposition follows immediately. g

It should be observed that an infinite type boundary point need not admit
a neighborhood in which every boundary point is of infinite type (consequently
Levi-flat). A primary example is given by the origin for the domain defined by

Rew > exp (—l_zlf—g_> .

Indeed, Greene and Krantz demonstrated the following, when they posed the
aforementijoned conjecture:

Proposition 5.3. The automorphism group of the domain in C? defined by
|2 + 2exp (-w| ™) < 1

is compact. In particular, there is no automorphism orbit accumulating ot any
boundary point (e¥,0), of infinite type.

The original proof of this proposition exploited the fact that the domain
in consideration is Reinhardt, admitting full rotational symmetry. However, it
turns out that, for the purpose pertaining to the Greene-Krantz conjecture, the
obstruction against the existence of automorphism orbits accumulating at the
point of such exponential infinite type boundary point is purely local. Consider
the following result.

Theorem 5.4 (Kim and Krantz [53]). Let Q be a domain in C? with a boundary
point p which admits an open neighborhood U and an injective holomorphic
mapping ¥ : U — C? such that ¥(p) = (0,0) and
Y(UNQ)={(z,w) € ¥(U):Rew > ¢(|2])}
where ¥ : R — R is a C°° smooth function satisfying:
(i) ¢ is C* smooth.
(ii) ¥(t) =0, Vt <0, and ¥"(t) > 0, Vt > 0.
(iii) ¥(t) = exp(—u(t)~) for some u(t) that is a non-negative smooth func-
tion vanishing to a finite order att = 0.

8Consider the function f(z) = |jz|| that represent the Euclidean distance between the
origin and the point z € Q. Since Q is compact, the function f(z) assumes the maximum, at
a boundary point p, say, of Q. Then 81 has a sphere contact at p so that the whole domain §2
is included in the sphere. Then p is in fact a strongly convex (hence, strongly pseudoconvex)
boundary point.
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Then there is no holomorphic automorphism orbit of Q) accumulating at p.

Sketch of the Proof. The detailed argument of the proof given in [53] is long
and tedious. On the other hand, the key ideas are as follows. Expecting a
contradiction, assume to the contrary that there is an automorphism orbit
v, (q) converging to p. Then apply the scaling technique to the domain €.
Calculations show that the scaled limit domain is biholomorphic to one of the
following domains:

(i) the open unit ball B in C?,
(ii) the open unit bidisc D = {(2,w) € C?: |z < 1, |w| < 1}
(iii) the domain T = {(z,w) € C?: Rez > exp(Rew)}.
These three domains occur depending upon the tangency of the orbit ¢, (q)
to the boundary. If the orbit is very tangential to the strongly pseudoconvex
part of the boundary, then the first possibility appears. If the orbit is not
so tangential to the boundary, than the bidisc shows up as the limit domain
of the scaling process. The appropriate intermediate exponential tangency of
the orbit to the strongly pseudoconvex part of the boundary produces the 3rd
possibility. Now notice that the convergence of scaling (see [53]) implies that
the original domain 2 has to be biholomorphic to one of the domains listed
above. But none of these possibilities can occur. In the first case, the domain 2
should be homogeneous, as the ball is. Then one may choose a non-tangential
sequence of automorphism orbit accumulating at p. Then scaling will show that
the domain € is biholomorphic to the bidisc. This shows that the domain  is
biholomorphic to both the ball and the bidisc. This contradicts the theorem of
Poincaré which says that there does not exist any biholomorphism between the
ball and the bidisc in complex dimension two. For the second case, a mirror-
image argument implies the same kind of contradiction. The third case is much
the same. Since the domain T" contains a real 3-dimensional subgroup without
fixed points, one finds an automorphism orbit of € that is either non-tangential
to the boundary or very tangential to the line of boundary points of infinite
type. In either case, one gets the bidisc as the new scaled limit. Then one
arrives at a contradiction as before. This, altogether, contradicts the theorem
of convergence of Pinchuk’s scaling method for the convex case (See [53], stated
as Proposition 3.2 in Section 3.3.). Therefore one is led to the conclusion that
there are no automorphism orbits in 2 accumulating at p, as claimed. g

Digressing slightly, we note the following results of J. Byun ([13], [14]):
Theorem 5.5 (Byun). Let Q be a domain in C2. Assume that there exists a
point p € 0Q admitting an open neighborhood U in C? satisfying the conditions

(1) the boundary 0N is C™, pseudoconvez, and of finite type in U, and
(2) the finite type of O at p is strictly greater than that of other points in
onnvu.

Then there do not exist any automorphism orbits in Q accumulating at p.
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Notice that this in particular implies
Corollary 5.6 (Byun). The Kohn-Nirenberg Domain

15
Q= {(z,w) € C*: Rew + |z2w|* + |2 + 7|z|2 Rez® < 0}
has no automorphism orbit accumulating at the origin (0,0).

In the case that the automorphisms extend to the boundary, one can say
more about the Greene-Krantz conjecture. Recent articles [71] by M. Landucci
and [15] by J. Byun and H. Gaussier show the following:

If a domain satisfies Condition R of Bell (that the Bergman
projection maps C®(Q) to itself—see [68]), if a straight line
segment of positive length lies in its boundary, and if each
point of the segment is convexifiable and of maximum type
(here infinite type is allowed), then none of the point on the

segment can be an orbit accumulation point.

Despite such encouraging and supporting evidences, the most general case
of Greene-Krantz conjecture still awaits a solution. At the same time we would
like to pose the more restricted problem:

Problem 5.7. Let 2 be a bounded domain in C**!, for some n > 1, with C®
smooth boundary. Then can one show that an isolated infinite type boundary
point cannot be an orbit accumulation point?

6. Asymptotic behavior of holomorphic invariants
6.1. Boundary behavior of the Kobayashi and Carathéodory metrics

Methods of scaling have been used to study the boundary asymptotics of
invariant metrics on strongly pseudoconvex domains in C**'. In what follows,
if 21, Q2 are domains then we let Q2(Q) denote the collection of holomorphic
mappings from {2; to Q. As usual, D denotes the unit disc in C. We begin
by defining two important invariant metrics in complex Finsler geometry (for
background and details, see [66]). These should be thought of as generalizations
of the Poincaré metric from the disc to more general domains.

Definition 6.1. If @ C C™"! is open, then the infinitesimal Carathéodory
metric is given by Fg : @ x C**! — R where

;)
Fo(z8)= swp If()el= s 132 g,)
feB() feB@) [ 024
¥(2)=0 f(z)=0 |7=0

Definition 6.2. Let Q C C"*! be open. Let e; = (1,0,...,0) € C**!. The
infinitesimal form of the Kobayashi/Royden metricis given by F : QxC*+1 —
R, where

Fr(z,€) =inf{|a| : 3f € Q(B) with f(0) = z,(f'(0)) (e1) = £/a}.
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Some alternative definitions are available. For instance the following invari-
ant form is known:

o [
F(z,6) = mf{m'

F€Q(B), (f'(0))(e1) is a constant multiple of g}.

Very little was known about these metrics—except for rather abstract gene-
ralizations—until the seminal work of Ian Graham in 1975 (see [34]). His basic
result is this:

Theorem 6.3 (Graham). Let Q cC C™*! be a strongly pseudoconvex domain
with C? boundary. Fiz P € 0Q. Let £ € C*1, and write & = &p + &n, the
decomposition of £ into complex tangential and normal components relative to
the geometry at the point P. Let p be a defining function for Q normalized so
that |Vp(P)| = 1. Let T'o(P) be a non-tangential approach region at P. If F
represents either the Carathéodory or Kobayashi/Royden metric on Q, then

. 1
B o) )= e

Here | | denotes Euclidean length and do(x) is the distance of © to the boundary
of Q. If £ = &r is complex tangential, then we have

Vi) F(e,8 = 3260

where

&€k

11’

n (92,0
L(£€) = -
j%;o 6zj62k
for & =(&,...,&n). Such L is called the Levi form for the defining function p.

Graham’s proof is based upon an intricate local analysis with uniform es-
timates on the 0 operator. Later, it has turned out that the proof using the
scaling methods are easier to understand and gives finer analysis. Such subse-
quent analyses are found in [78], [31], [10], [77], [2], and others. Here we present
S. Lee’s refinement and proof by the scaling method.

Theorem 6.4 (S. Fu, D. Ma, S. Lee). Let Q be a bounded domain in C*+!
with a C? smooth, strongly pseudoconvez boundary. Let Fo(p,¢) denote either
the Carathéodory or Kobayashi metric of Q for £ € T,QQ = C™*1. For each
q € Q sufficiently close to the boundary of Q, choose a boundary point p € 89
that is the nearest to g. Then it holds that

: €~ ol \2 . Looplérp,€rp) o
ql—l%lﬂ ((Zd(q,gﬂ)) T (;(q’ 31;2) . ) -Fo(q,6)7% =1,
where:

(1) d(q,0R) is the distance between q and 012,




546 KANG-TAE KIM AND STEVEN G. KRANTZ

(2) &np and &rp denote the normal and the tangential components to OQ
at p of the vector £, understood by a parallel translation as a vector at
p € 0f, and

(3) Laq,p represents the normalized Levi form of 9Q at p.

Notice that this result analyzes the asymptotic boundary behavior of the
Carathéodory and Kobayashi metric in all directions, without restricting the
trajectory of the point ¢ as it approaches the boundary 9€2. Moreover, this
shows that the Carathéodory and Kobayashi metrics are asymptotically Her-
mitian.

Sketch of the proof. Lee’s proof proceeds following the scaling method. Let Q
and p € 90 be as in the hypothesis of theorem. Following the original work of
Graham [34], one first observes that there exists an open neighborhood U of p
for which one has

FQ(qa 5) ~ FQﬁU(q) f)

as g approaches p. Then, shrinking U if necessary, apply the scaling method
to QN U. With the dilatation sequence associated with g above, which is the
centering map followed by a stretching map A; = L; o A;, one sees that the
following hold:

(1) With an appropriate fixed Cayley transform (a linear fractional trans-
formation) ®, the sequence of domains oA ; (2NU) converges normally
to the open unit ball.

(2) ®0A;(q) =0 for every j.

Therefore, by the invariance and interior stability properties of the Kobayashi
and Carathéodory metrics, one sees that

Foru (g, €) = Faop,(onu)(0,d[® o Aj]4(£))
~ Fg(0,d[® o A;]4(€)).

Now a careful analysis of the last term yields the desired conclusion. See [77]
for the detailed analysis. a

One easily sees in this method that strong pseudoconvexity is not a restrict-
ing factor for this type of analysis. Indeed, Lee in the same paper showed
how to analyze the boundary behavior of such metrics in a domain with an
exponentially flat, infinite type boundary.

6.2. Boundary behavior of the Bergman invariants

The role of the dilatation sequence in the preceding section is two-fold:

(1) It turns the boundary limiting behavior problem into an interior sta-
bility problem.

(2) The normal convergence limit of the sequence of sets becomes generally
simple.
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Therefore study of boundary behavior of several holomorphic invariants can
be handled through scaling as long as they are localizable and have interior
stability.

Thus it is natural to reprove and refine the important theorem of Klembeck
[61] on the boundary behavior of Bergman curvature in the strongly pseudo-
convex domain by scaling.

The Bergman kernel, metric and curvatures have to be introduced. For a
bounded domain  in C"*1, we consider the square integrable holomorphic
functions

A%(Q) = {f : Q — C: holomorphic, /Q fdu < oo}

where du denotes the standard Lebesgue measure for C**!. It is obviously a
linear subspace of the Lebesgue space L*(Q). It follows by the Cauchy estimate
that A%(Q) is a Hilbert space. Moreover, it is a separable Hilbert space with
respect to the standard L? inner product.

Let z be a point in 2. Consider the point evaluation map

U, A%(Q) - C

defined by ¥, (f) = f(z). The Cauchy estimates imply that this is a bounded
linear functional. Consequently, the Riesz representation theorem implies that
there exists a holomorphic function k, € A%*(Q) such that

V() = /Q FORO du0)

for every f € A*(Q). Let Kq(z, () = k,(¢) for (z,¢) € Q x Q. It is known that
the function satisfies the following properties:

(i) Ka(z,¢) is holomorphic in z = (2o, ..., 2,) and conjugate holomorphic
in C = (Co,...,cn).

(ii) Ka(z,¢) = Ka((, 2).
(i) f(z) = /Q K(2,0)f(C) du(C) for every f € A2(Q).

The function Kq is the Bergman kernel function for Q. Bergman showed
that the bilinear form

", 9%log Koz,
ﬂpEZ og Ka(z,z)

dz; ® dz
BZjaik P % ® a2k

Gyk=0
defines a positive definite Hermitian form on the tangent space at p for Q.
This is the Bergman metric. Following the formalism in differential geome-
try this metric admits various concepts of curvatures including the notion of
holomorphic sectional curvature.
Now we are ready to present the main theorem of this subsection.

Theorem 6.5 (Klembeck, Kim/Yu). Let Q be a bounded domain in C"*!
with a boundary point p € Q. Denote by S(q,&) the holomorphic sectional
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curvature of the Bergman metric of Q at ¢ € Q in the direction § € T,Q. If
there ezists an open neighborhood of p in C™*1 such that 09 is C? strongly
pseudoconver at every point in dQNU, then

. 4
ng—l»p S@8) = n+2

Sketch of the proof. It seems appropriate to point out that the number —4/(n+
2) is actually the holomorphic sectional curvature (from here on, we shall simply
say holomorphic curvature) of the Bergman metric at the origin of the unit ball
B in C**1. Therefore Klembeck’s theorem simply says that the holomorphic
curvature of a bounded domain is asymptotically the holomorphic curvature
of the unit ball at the origin, as the reference point approaches a strongly
pseudoconvex boundary point. Originally, Klembeck proved the above stated
theorem with the stronger assumption that the domain has C* strongly pseu-
doconvex boundary. He needed such a strong assumption because he used the
celebrated asymptotic expansion formula of C. Fefferman for the Bergman ker-
nel function. The improvement by Kim and Yu is in that they avoided using
Fefferman’s formula by exploiting the convenience of the scaling method for this
type of problems, and that as a consequence they could prove the theorem with
C? smoothness, the optimal regularity assumption for strong pseudoconvexity.

The actual arguments by Kim and Yu proceed much along the line of scaling
methods demonstrated above. (In fact, this type of arguments that uses the
scaling methods to study asymptotic behavior of holomorphic invariants started
with this problem in [51]. See [60] for further developments. Note also that
Klembeck’s result gives another way to prove Wong-Rosay theorem.)

With the notation in the theorem, we let g represent the general element of
a sequence of interior points of { approaching p. We shall proceed much in the
same way as in the scaling proof of Graham’s theorem in Section 6.2.

First one localizes the problem. Namely, for the sequence of non-zero tangent
vectors &, € TS, one needs to establish that for any open neighborhood V' of
q, there exists an open set U with p € U C V such that the relation

Salg; &q) ~ Sanv(a;€q)

holds as ¢ approaches p. This was done in [60] in detail (see also [56]) using
two classic results: the representation of the holomorphic curvature of the
Bergman metric by the minimum integrals and the L? estimates of 0 operator
by Hormander. It should be mentioned that the argument by Kim-Yu does not
use any regularity of the boundary but uses only the existence of holomorphic
peak functions at p and the pseudoconvexity of the domain €2 in consideration.

Then the next step is to change the holomorphic coordinates, by a biholo-
morphism 2 of U onto an open ball U in C™ centered at the origin 0 with an
appropriate radius, such that ¥ (p) = 0 and

P(O@NU) = {z¢€ U :Rez > lzo|® + -+ + | 2|2 +0(|zo|2 4 |zaD)}



COMPLEX SCALING AND GEOMETRIC ANALYSIS OF SEVERAL VARIABLES 549

Let ¢ = v¥(q). Note that g approaches the origin 0 now. Then on ¥%(Q2 N U)
with g, let us build the centering map Ay, the stretching map Lj and hence
the scaling map Ay = Lo Az

Now observe that the sequence of sets Az(1(2 N U)) converges normally to
the Siegel half space S in C™ defined by

Rezy > |z1> + -+ + |zn|?

and Az(g) = (1,0,...,0).
Let ® be a standard Cayley linear fractional transformation that maps S
bihomorphically onto the unit ball B such that ®(1,0,...,0) = (0,...,0).
Since the holomorphic curvature of the Bergman metric is a biholomorphism
invariant, one immediately deduces that

SQ(Qagq) ~ SQﬁU(Qagq)
= ScboAq(QmU)(‘I) o Ag(q), d(® o Ag)lg(&y))

~ 8p(0,d(® o Ay)le(&))
4

Tn+1’
which is the conclusion of the theorem. 0

It should be obvious at this point that using the same method one can
study the boundary behavior of the Bergman metric as well as the kernel it-
self in several cases including, but not limited to, the strongly pseudoconvex
domains. The interested reader may consult the articles such as [10], [56] and
the references therein.

6.3. Boundary asymptotics of the Poisson kernel

In the recent paper [67], Krantz uses a scaling method to derive results on the
boundary asymptotics of the Poisson kernel on a bounded domain § C R7+1
with C2 boundary. A typical result is

Theorem 6.6 (Krantz). Let Q) C R™! be a bounded domain with C? boundary.
Let P : Q2 x 0Q — R™ be the Poisson kernel for Q. Let §(z) = do(x) denote
the distance of x to 0Q). Then there are constants ¢y, cy > 0 such that
é(z) 6(z)
(*) Cl'mfp(x,y)ﬁc2'm-
It is worth mentioning that the scaling sequence here is isotropic, as the
Laplace operator should be kept within the same conformal class.

7. Scaling in infinite dimensions

In recent years the complex function theory of infinite dimensions, partic-
ularly of Hilbert space, has received considerable attention. This new venue
helps to put the classical finite-dimensional situation into new perspective, and
offers many new challenges. We offer here one example of a result that can be
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proved by a scaling method, although it must be emphasized that many aspects
of the classical arguments of Wong and Rosay as well as a direct application of
scaling methods fail in this context, and many of them require new ideas:

Theorem 7.1 (Kim/Krantz, Byun/Gaussier/Kim, Kim/Ma). Let ) be a boun-
ded domain in a separable Hilbert space H. Assume that Q admits o boundary
point p € 050 at which

(1) 89 is C? smooth and strongly pseudoconvez in a neighborhood of p, and
(2) there exist @ € Q and f; € Aut(Q) ( = 1,2,...) such that f;(q)

converges to p tn norm as j — oo.

Then Q is biholomorphic to the unit ball B = {z € H : ||2]| < 1}.

We do not include the detailed construction of the scaling sequence in infinite
dimensions. The interested reader may consult the article by Kim, Krantz [54]
and also Byun, Gaussier, and Kim [16], Kim, Ma [57].

8. Further results

It should be apparent by now that the scaling method is a powerful tool
for studying the asymptotic behavior of holomorphic invariants as well as the
non-compact orbits of a domain. At least it should be obvious that the scaling
method is related to many other problems that have been open for some time
and still need to be studied.

8.1. Linearization of holomorphic maps

Linearization is one of the traditional problems in function theory. The orig-
inal problem is this: given a mapping from a subset {containing the origin) of a
Euclidean space into another subset in the same space, can one find a new local
coordinate system at the origin for the Euclidean space under consideration so
that the original mapping becomes a linear map? Let us consider the case
when the subset above is a domain, say 2, the Euclidean space is the complex
space C"*! and the map f :  — C™! is a holomorphic mapping preserving
the origin. The linearization problem now is asking whether there exists a local
biholomorphic mapping near the origin preserving the origin, say h, such that
ho foh™! is the restriction of a complex linear mapping from C™*! into itself.

As studied earlier by Latteés, Poincaré, Dulac and others (see [95] and the
references therein), one may ask whether there is a linear mapping L : C"+! —
C™*! such that the sequence ¥; = L9 o fJ converges uniformly on compact
subsets of U to an injective holomorphic mapping, as 7 tends to infinity. Here,
fi*Y = fio f for each j = 1,2,.... Let f° denote the identity map. Let
f~% = (F~Y%. If the answer to this last question is affirmative, let ¢ =
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lim; ..o L7 o fJ. Then it follows that

¥ = lim Lo fI

J—oo

= L7lo(lim L™ o fimlYo f

J—00
= I,_1 O’l/)Of.

This shows that 1o foy~! = L, and hence the linearization problem is solved.
Therefore a key question is this:

Does there exist a linear map L such that the sequence L™ o fJ
forms a normal family?

In Heu of a complete explication of this preblem, we begin by pointing
out that one cannot help but notice the strong resemblance of this problem
to the scaling method. The conditions for the convergence of the sequence
LI o fJ have been studied extensively, from a time much earlier than the
time of Pinchuk’s initial studies of complex scaling method. For instance, in
case the map f is a contraction, in the sense that each eigenvalue of the Ja-
cobian matrix dfy at the origin has modulus less than 1, then the obstruction
to the convergence is known—it comes down to a resonance relation, that is in
fact a collection of finitely many algebraic equations between the eigenvalues
of dfy. A typical result is that if the eigenvalues of dfy are free of resonance
relations, then the sequence L7 o f7 form a normal family in a neighborhood
of 0. Consequently, the map f is linearizable.

Focusing still on contractions, we consider the situation related to domains
with non-compact automorphism group; this of course is one of the key subjects
of the present article. Consider a real hypersurface M in C"*! passing through
the origin 0. Let us assume that there exists a holomorphic mapping f defined
in a neighborhood U of 0 mapping U into C**! such that

(A) f(0)=0,
(B) f is a contraction,
and
(C) f locally preserves M, ie., f(MNU)C M.

Now we ask whether f can be linearized. As one readily observes, we are asking
whether the condition (C) can replace the resonance-free condition.

In some sense, in case M is a real-analytic hypersurface that is strongly
pseudoconvex and not locally biholomorphic to part of the sphere, then (C)
does replace the resonance-free condition. (See [69], [59], [27], [95].) But then
it is not hard to deduce the following statement:

Proposition 8.1. Let M be a germ of real-analytic hypersurface in C**! pass-
ing through the origin. Assume also that M is strongly pseudoconvex. If there
exists a local biholomorphism f of C*T! defined in a neighborhood of O pre-
serving the origin end mapping M to M as o contraction (meaning that every
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eigenvalue of dfy has modulus strictly less than 1), then M is biholomorphic to
a germ at O of the hypersurface defined by

Rezp = |a1)? + - + |za]2

The proof follows by the linearization. We give a rough sketch only. Ex-
pecting a contradiction, let us assume that M is not biholomorphic to a germ
of the quadratic surface described above. Then f is linearizable, as mentioned
above. Let Rezy = p(z1,..., 2s,Im z7) denote the defining relation of M. Let
us assume, after a reduction, that f itself is linear. Now replace f by its Jordan
canonical form. Roughly speaking, the components (fy,..., fn) of the map f
will satisfy

R‘ef() = p(Ime:fl’ s :f‘n)

Notice that f is almost a diagonal linear map with the moduli of the eigenvalues
all less than one. Give weights to the variables, so that the weight for z is 2,
and the weight of zp is 1 for £ = 1,...,n. Therefore an iteration of this process
will imply that all the monomial terms in the Tayler expansion of p with degree
higher than 2 must vanish. This is strongly analogous to the scaling method
described earlier in this paper. But then the conclusion is that M has to be
defined by a quadratic equation. Since any strongly pseudoconvex hypersurface
defined by a quadratic equation with the prescribed weight has to be linearly
biholomorphic to part of sphere, we have arrived at a contradiction. O

This line of investigation gives rise to a number of interesting questions.
Notice in particular that the preceding proposition gives a short and simple
proof to part of following theorem (see the discussion following for terminology):

Theorem 8.2 (R. Schoen [94]). Let M be a C™ strongly pseudoconvez CR
manifold of hypersurface type. If a point p € M admits a CR automorphism f
of M such that im;_,., f7(q) = p for every point ¢ on M except possibly one
point, then M is CR equivalent to the sphere or the sphere minus one point.

The concept of abstract CR manifold, of hypersurface type or of more general
type, requires a precise introduction. We refer to [11] for details. Nevertheless,
it is not so difficult to picture what a CR manifold of hypersurface type should
be. First consider a smooth real hypersurface M (of real dimension 2n + 1)
in C**1. For each p € M, the real (extrinsic) tangent space T,M contains
complex n dimensional complex vector subspace in it. This gives rise to a sub-
bundle D of T M with complex fibers, with real rank 1 transversal distribution.
Implementing this type of bundle with some conditions called integrability in
an abstract way formulates the concept of CR manifold. See [11]. Further, it
is also possible to define the Levi form from this abstract setting, and hence
the concept of strongly pseudoconvex CR manifold of hypersurface type. Due
to the famous embedding theorems of strongly pseudoconvex CR manifolds
of hypersurface type, except for the case of dimension 3 or 5, the abstract
strongly pseudoconvex smooth CR manifolds of hypersurfaces type are locally
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equivalent to smooth strongly pseudoconvex CR hypersurfaces in a complex
Euclidean space. (See [70], [1], [98], and [90].)

Continuing discussions from the above-stated theorem of Schoen, we feel
that it is natural at this juncture to pose the following:

Problem 8.3. Let M be a C*™ smooth, pseudoconvex CR hypersurface of finite
type in C"*! passing through the origin, not locally biholomorphic to a sphere.
If there is a contracting local biholomorphic mapping f of C**! preserving the
origin and the surface M, then show that f is linearizable.

8.2. CR hypersurfaces with special CR automorphisms

We shall continue with the discussion above. Focusing more on CR hy-
persurfaces, it may be appropriate to point out that non-degeneracy of the
Levi form (which is often called Levi non-degeneracy) is a more natural con-
cept than strong pseudoconvexity, at least for the CR hypersurfaces. Then
the representative model for such Levi non-degenerate hypersurfaces should be
hyperquadrics. On the other hand, it turns out that the existence of a contract-
ing holomorphic map that preserves the CR hypersurface is a condition not in
general restrictive enough to conclude that the CR hypersurface with a con-
tracting holomorphic automorphism must be biholomorphic to a hyperquadric.
A correct condition has been found by Kim and Schmalz in [59].

Call a local biholomorphic map f at 0 preserving a CR hypersurface germ
M at 0in C™* a CR hyperbolic automorphism of M if dfy is expanding along
the normal direction to M while dfy is contracting along a complex tangential
direction. Then one has the following result.

Theorem 8.4 (Kim and Schmalz). Let (M,0) denote a germ of a real-analytic
Levi non-degenerate hypersurface at 0 in C**! (n > 2). If M admits a CR
hyperbolic automorphism, then M is biholomorphic to a germ of hyperquadric
in C*Hi,

Again, it is expected that the C* version (or even C?) of this theorem should
be true, but the more general result remains open at this time.

8.3. Existence of a one-parameter family of automorphisms

Another interesting problem (communicated to us by Wu-yi Hsiang) that is
closely related to the subject of this article is as follows:

Question 8.5. Let 2 be a bounded domain in C**! with C* boundary. If
there exists a sequence ¢, of automorphisms of 2 and a point ¢ € ) such
that the orbit v,{g) accumulates at a boundary point p of €0, then does the
holomorphic automorphism group Aut 2 contain a noncompact one-parameter
subgroup?

Recall that the scaling method (when it applies) usually finds that the given
domain is biholomorphic to a domain represented by an inequality of type

Rezg > ¥{z1,. .., 2n).
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Hence there is a 1-parameter translation automorphism subgroup along the
Im 2y direction. So the answer to the above question is positive in several cases
listed below in which the scaling sequence always converges to a nice domain
having such a translation and/or dilation:

e 2 is convex and Kobayashi hyperbolic {(but the boundary need not be
smooth (see [30], [50]));

e () is a subdomain of C? and bounded, or if @ C C? is defined by a
pluri-subharmonic defining function, say p, with fp dd'logp = +oo
(see [8]).

Since the convergence of scaling in the general case is quite difficult, it seems
reasonable to appeal to a different viewpoint. In particular, we present a re-
cent result that has exploited the circle of ideas surrounding the linearization
problem described above.

Theorem 8.6 (K. T. Kim and S. Y. Kim). Let Q be a bounded pseudoconvex
domain in C™"*! with a real-analytic boundary, and with no non-trivial complex
analytic variety. If there exists f € Aut (Q) such that f(p) = p for some p € 69
and such that f is a contraction at p, then dimg Aut € > 2.

Before sketching the proof, we point out that the recent result by K. Diede-
rich and S. Pinchuk on the reflection principle {[24]) implies that every holo-
morphic automorphism of such £ extends holomorphically across its boundary
(see also [45]). Hence the assumption that f should belong to Aut (Q) is not
so restrictive in this case.

Now, we sketch the proof. The argument is computational, and is rather
intricate and involved. However, the nub of the proof is that f can be lin-
earized to a diagonal matrix unless the boundary 0§ near p is biholomorphic
to a CR hypersurface defined by a weighted homogeneous polynomial function.
Then it is shown in [52] that the linearizability again implies that the hyper-
surface has to be defined by a weighted homogeneous polynomial. Altogether,
one can conclude from this, using normal families argument, that the domain
€ is biholomorphic to a domain in C**! defined by a weighted homogeneous
polynomial. But this latter domain admits two non-compact 1-parameter fam-
ilies of automorphisms: dilation and translation. Thus the conclusion of the
theorem is obtained. O

8.4. New family of homogeneous spaces with non integrable almost
complex structures

Since the seminal paper by M. Gromov [41], the study of almost complex
structures has not only been revived, but it has emerged as one of the cen-
tral objects of study, in particular in symplectic geometry and the related
researches. It is generally believed {(and said openly) that one should study the
pseudo-holomorphic curves (rather than pseudo-holomorphic functions) i.e., the
J-holomorphic mappings from the unit open disc in C with the standard almost
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complex structure, say Jg, into a manifold with an almost complex structure J,
because the pseudo-holomorphic mappings (i.e., (J, J')-holomorphic mappings
from an almost complex manifold (M, J) into another such (M’, J') rarely ex-
ist. On the other hand, it has turned out that in real dimension 6 or higher,
K. H. Lee in his Ph. D. thesis ([73]-[76]) discovered that there are infinitely
many mutually inequivalent almost complex manifolds that have the following
two distinctive features:

(1) their pseudo-holomorphic automorphisms act transitively
on the manifold,

(2) and yet, their almost complex structures are not inte-
grable.

The purpose of this subsection is to introduce the recent results obtained by
K. H. Lee briefly, and then suggest several problems that should be studied, in
lieu of other results discovered recently.

We start by introducing K. H. Lee’s theorem. For this we introduce the
following examples:

Let t € R. For C?, use the coordinate presentation z; = z;+iy; for j = 1,2,3
and for i = \/—1. Define the real 6 x 6 matrix

0 -1 0 0 0 ¢tz°
1 0 0 0 tzg O
J, = o 0 0 -1 0 0
0 ¢ 1 0 0 O
0 6 0 6 0 -1
0 06 0 06 1 0

Let
Qe ={zeC® |z + (|2 +|23]*) < 0}
Then one has

Theorem 8.7 (K. H. Lee [75]). Let 0 <t < 8. For the one parameter family
(4, Jy) of almost complex manifolds, the following properties hold:

(i) Each almost complex manifold (Q,J;) is homogeneous, in the sense
that the group Auty(Q:) of J-holomorphic diffeomorphisms of Q¢ onto
tself acts transitively on £3;.

(ii) For every t # 0, J; is non-integrable.

(iii) (4, J:) and (Qs, Js) are biholomorphic (i.e., equivalent via a (Ji, Js)-
holomorphic diffeomorphism) for s,t € [0,8) if, and only if, s = 1.

(iv) Each (Q4,J:) s Kobayashi hyperbolic.

(v) Any Kobayashi hyperbolic domain in an almost complex manifold of
real dimension 6 with an automorphism group orbit accumulating at a
strongly pseudoconver boundary point is equivalent to (02, Jy) for some
te|0,8).
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Furthermore, Lee shows in his papers [73] (See also [75] and [76]) that
Aut ;(£2;) is a real Lie group of real dimension 9 for every ¢ € (0, 8), whereas the
automorphism group of (§2y, Jp) is of dimension 15 (because it is biholomorphic
to the standard ball). We must point out also that Lee has described all the
Ji-automorphisms in his papers.

For the interested reader, we remark that Lee expanded his analysis and
classified such models in all dimensions.

1t is appropriate to provide some explication on how Lee constructs such a
family of examples. Lee’s starting point is a surprising discovery by H. Gaussier
and A. Sukhov [32], [33]. Let n > 2 and let  be a domain in R*" with a C?
smooth boundary with C*° smooth almost complex structure J. Assume that
(€, J) admits a sequence of J-automorphisms, an interior point p € € and
a boundary point ¢ € 9 at which 01 is strongly pseudoconvex admitting a
sequence of J-holomorphic automorphisms ¢; of Q such that {¢;(¢)} accumu-
lates at p (despite that this assumption may possibly be a priori empty).

Then one applies Pinchuk’s scaling method here. But, one has to be care-
ful because the Pinchuk scaling sequence, say A, : (Q,J) — (C3,Jg), is not
(J, Jst)-holomorphic in general. Therefore, one must equip the image A, ()
with the almost complex structure J, = (A, ).J. Then Gaussier and Sukhov
(also Lee) show that the sequence of domains A, () converges as v tends to
infinity, as well as the sequence J,, of almost complex structures converge to a
limit almost complex structure, say J.

Then, in real dimension 4 (i.e., the case n = 2}, Gaussier and Sukhov showed,
through an intricate analysis, that the limit domain equipped with the limit
almost complex structure is equivalent to the unit ball in C2 equipped with the
standard structure. But then, to a surprise to many experts, they indicated
that, in case of dimension 6 or more, the limit domain may still have an almost
complex structure that is not even integrable. |

Lee in his Ph. D. dissertation analyzed this situation carefully further, and
first came up with the complete list of possible limit domains with limit almost
complex structures. It is indeed surprising that those limit domains possess
the structures described in the above mentioned theorem, thus introducing a
new line of examples that are worthy of further investigations.

We refer the interested readers to Lee’s papers [73]-[75] for further informa-
tion on these new families of almost complex manifolds that are homogeneous,
Kobayashi hyperbolic and with non-vanishing Nijenhuis tensors. On the other
hand, we would like to pose a few interesting problems for further study in this
direction.

Problem 8.8. For a compact almost complex manifold with a symplectic
structure (M, J,w) the Bergman kernel has been constructed by X. Ma and
G. Marinescu (See [79].) Can one construct the Bergman kernel for Lee’s
domains introduced above imitating Ma-Marisnescu method?
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Problem 8.9. For homogeneous domains with the standard complex structure,
there is a Jordan algebra method of constructing the Bergman kernel. Can one
find an analogous method for Bergman kernel constructed via an analogue of
the Jordan triple system method? What would such Bergman kernel(s) explain
for these domains?

9. Concluding remarks

The study of automorphism groups is an instance of Felix Klein’s Erlangen
program. It provides an algebraic/geometric invariant for distinguishing and
comparing domains in a complex space or a complex manifold. It is proving to
be a powerful tool in many aspects of geometric analysis and function theory.
Certainly the scaling method, which is an outgrowth of the theory of auto-
morphism groups, is finding use in subjects ranging from partial differential
equations to differential geometry to complex variables. We hope that this
exposition will spur further interest in this circle of ideas.
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