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OPTIMAL CONDITIONS FOR ENDPOINT CONSTRAINED
OPTIMAL CONTROL

Kyung-EunGg Kim

ABSTRACT. We deduce the necessary conditions for the optimality of end-
point constrained optimal control problem. These conditions comprise the
adjoint equation, the maximum principle and the transversality condition.
We assume that the cost function is merely differentiable. Therefore the
technique under Lipschitz continuity hypothesis is not directly applicable.
We introduce Fermat’s rule and value function technique to obtain the
results.

1. Introduction

We consider the following Mayer type optimal control problem with endpoint
constraint

subject to  Z(t) = f(t,z(t),u(t)) ae t€[S,T]
u(t) € U(t) ae. t €S, T
(@(8),z(T)) € C,

where [5, 7] is a time interval,
Pp:R*xR* >R and f:[S,T]xR*xR™ > R"
are two functions,
U:[8,T)~R™
is a set-valued map (which is also called multifunction) and
CCcR"xR"

is a set.

If the cost function ¥ and the velocity function f are Lipschitz continuous,
then the Theorem 6.2.1 of {6] is directly applicable to our problem. According
to this theorem, in the case when A # 0, the following conditions are necessary
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for optimality of the arc Z and the control @ corresponding to Z: there exists
an absolutely continuous function p : [$,T] — R™ such that

—p(t) € codz H(t,Z(t),p(t), u(t)) ae. t€[S,T]
H(t,3(0),p(t), 5(t)) = maxunevo H(t 2(8),p(0),u) ac. t € [S,T]
(p(S), —p(T)) € 09¥((5),2(T)) + Ne(2(S), 2(T)),
where
H(t,l’,p,u) =p- f(t,:z,u)
and 0 and Ng(-) denote the limiting subdifferential and the limiting normal
respectively.
But in our control problem the cost function 4 is not Lipscitz continuous (it

is merely differentiable). Therefore the theorem of [6] is not directly applicable
to our problem, i.e., the limiting subdifferential

09(z(5),2(T))

is not reduced to the classical derivative

V((5), 2(T))-
This reduction is possible in case that % is continuously differentiable. See [5,
p.304].

2. Preliminaries

We call an absolutely continuous function an arc and say that an arc satis-
fying the following control system
i(t) = f(t,2(t), u(t)) ac. t€[S,T]
1) u(t) e U(t) ae. t€(S,T]
(z(5),z(T)) €C
is feasible. A feasible arc is called a trajectory. A measurable function u :

[S,T] — R™ satisfying u(t) € U(t) a.e. is called a control. We introduce the
reachable set in the above system without endpoint constraint

R(S,T) = {(z(S),z(T)) | z is a solution to (1) where C =R" x R™ }.

Throughout the whole paper we suppose that

I) Cis a closed set
II) v is differentiable
III) f(t,-,u) is differentiable
IV) f(-,z,u) is measurable
V) f(t,z,-) is continuous
VI) there exists k > 0 such that for all t € [S,T], for all (z,y) € R* xR",

£t z,u) = f(ty,u)ll < Kz —yll
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VII) there exists m > 0 such that for all t € [S, T,

sup | <m
vEF(t,z,U(L))

VIII) U(-) is measurable
IX) for all t € [S,T7], U(t) is nonempty and compact
X) for all (¢,x), f(t,z,U(t)) is convex.

Let K be a subset of a Banach space X. The positive polar cone of K is defined
b;

’ Kt={peX'|VueK, (p,u) >0},
where X' is the dual space of X. The negative polar cone of K is defined by

K- ={peX'|VueK, (p,u) <0}.
The contingent cone (Bouligand tangent cone) Tk (x) to K at x is defined by
dist(z + hv, K)
h

In other words, Tk (z) comprises vectors ¢ corresponding to which there exist
some sequence v; in K and some sequence t; \, 0 such that ¢, 1(vz~ —xz)— &

In the following, we fix a trajectory-control pair (Z,%). Let us introduce the
following sets.

A= {w & W'3(5, T];R") 1 () = 9L(t,3(t), a(t))w(e) + v(t) }

Tk (z) = {v € X | liminf =0}.
k(z) ={v e X| limin 0}

A:{weA

w e WH([S, T];R")} ,

where Wh2([S, T]; R") (respectively, W1*°([S, T]; R™)) is the space of functions
w € L*([S,T);R™) (respectively, L°°([S, T); R™)) such that w’ € L2([S,T]; R")
(respectively, L>([S, T]; R™)).

The next propositions will be used to prove the main theorem.

Proposition 2.1. A4 is dense in A for the topology of uniform convergence.

Proof. See [3]. O

Proposition 2.2. Let vy is a linear continuous function defined by

v:C(S, TR — R™ x R™
w = (w(S), w(T)).

Then we have
Y(A) C Trs,1)(E(S), 2(T)).
Proof. See [3]. O



566 KYUNG-EUNG KIM

Now consider the following linear continuous operator:

(1xD): WIS, T);R?) — L2%([S,T];R™) x L*([S,T);R")
w — (w,w)

where D denotes the differential operator.
Proposition 2.3. Set
L={(zy) € L*[S,TLR") x L[S, TR |

yls) € g;];( 2(5),4(5)) - 2(5) + Ty(s,2(5),0(51) (E(5))
a.e.in [S,T1}.

Then

@) WS, T;R™) D AT = (1 x D)*(LY),

where A is defined above and (1 x D)* denotes the adjoint of 1 X D.

Proof. See [2]. 0

3. Necessary conditions for optimality

In this section, we first assume that the process (Z, @) is optimal for the prob-
lem without endpoint constraint. Note that A # 0 because 0 € A. The next
lemma which is called Fermat’s rule is the main idea to obtain the necessary
conditions for optimality.

Lemma 3.1. If Z is optimal for the problem without endpoint constraint, then
+
V((S), 3(T)) € (Tais.)(3(), (1))

Proof. Let (u,v) € Tr(s,7)(Z(S),Z(T)). Then there exist sequences h; — 01
and (u;,v;) — (u,v) such that
(Z(S), (1)) + hs(us,vs) € R(S,T) Vi.

Since 7 is optimal, we have

PY(E(S) + hivg, 2(T) + hyvi) > $(2(S), 2(T))
and thereby

(Vo (2(5), 2(T)), (u, v)) = 0.

Since (u,v) is arbitrary, we have

Vi (@(S),2(T)) € (Tres.m (@), #(T))

O

Now we can deduce the necessary conditions for optimality in the problem
without endpoint constraint.
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Proposition 3.2. Suppose that (Z,4) is optimal. Then there exists an abso-
lutely continuous function p such that

i) (Adjoint equation)

—p'(t) = -gg—(t,a":(t),ﬂ(t))*p(t) a.e. in [S,T]

i) (Mazimum principle)

max <p(t), f(t,gz(t),u)> - <p(t), f(t,i:(t),ﬁ(t))> ae. in [S,T]

uel(t)
ili) (Transversality conditions)
(p(S), —p(T)) € Vp(2(S),Z(T)).
Proof. By Lemma 3.1 and Proposition 2.2,

VUGS, 5 € (Tusin (a(5),2r0) ¢ (+(4))”

i.e., for allw € A C C([S,T];R"),

(VY(2(5), 2(T)), v(w)) = (" V(2(S), 2(T)), w) 0.
This implies that
(3) 7 VH(E(8), 3(1)) € AT

Using the fact that A* = A% (Proposition 2.1), let £ € A* c C([S, T]; R™)’ be
such that

7*V(2(5),2(T)) =&
Note that
C([S, T;R™) ¢ Wh3([S, T; R™Y.
Therefore we have
(4) (Y VY(E(S), #(T)),w) = (€, w) 20 Yw e WH([S, T];R™).
Proposition 2.3 implies that there exists (r,q) € L* such that
(5) £=(1xD)"(r,q).
The equations (4) and (5) imply that for all w € W12([S, T}; R"),
(V*Vp(E(8), 2(T)), w) = (1 x D)*(r, q), w).
Thus for all w € WH3([S, T}; R™),
T T
©) [ rowod+ [ gt = (96(),aD), (w(S) ).

S
On the other hand, by integrating by parts, we have

/STr(t)w(t)dt . /STu-,(t) /S tr(s)dsdt+<w(t), /S t,«(s)d3>

T

S
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Now we set
Wy (S, T R™) = {w € WH([S, T;R™) | w(S) = w(T) = 0}.
Then (6) becomes, for all w € W, *([S, T];R™),

/S " () (att) - /S t r(s)ds)di = 0.

By Dubois-Reymond Lemma ([1, p.42]), there exists a constant ¢y € R™ such
that

q(t) =co +/ r(s)ds.

s
We define
(1) p(t) == —co _/S r(s)ds.
Then
p(t) = —r(t)
and
q(t) = —p(t)-

On the other hand, for all w € W12(|S, T];R™) such that w(S) = 0, we have

by (6), . t

</ST,~(t)dt,w(T)>+/S w(t)(q(t)—/s T(s)ds)dt

= (V29(2(5), 2(T)), w(T))

= </T r(t)dt + co — Va29p(2(S5), 2(T)), W(T)>

s
=0.

Therefore we have

®) [ = Vewia(s),2(1) - o

S
This implies that
Va(z(S5), Z(T)) = —p(T),
where V5 denote the derivative with respect to second variable. Similarly, for
all w € WH2([S, T]; R™) such that w(T) = 0, we have by (6)
V1p(2(5), 2(T)) = p(S5),

where V1 denote the derivative with respect to first variable.
Now, recall that (r,q) € L. For all v € L?([S, T]; R™) which verifies

v(t) € Tre,ae),u ) (Z(t))
we have
(0,v) € L.
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Therefore
T
(9) ((r,q),(0,v)) = /S (q(t),v(t))dt > 0.

From the measurable selection theorem and the fact that f(s, Z(s),U(s)) —
Z(s) C Tf(s,i(s),U(s)}(i(s)), we deduce that
sup{(—q(s),§)I¢ € f(s,2(s),U(s)) — f(s,2(s),u(s))} <O ae.
On the other hand,
f(s,2(s),a(s)) € f(s,%(s),U(s)),
hence
max{(—q(s),&)|€ € f(s,Z(s),U(s)) — f(s,E(s),u(s))} =0 a.e,

therefore we obtain the maximum principle:

(=q(s), f(s,2(s), u(s))) = max (-q(s), f(s,%(s),u)) ae.

uelU(s)
i.e.,
(plo), £ 2(5),(s)) ) = max (pls), fls,5(s),w)) ae
Since
0¢€ Tj(s.a‘v(s),U(s}}{f(s)) Vs € {Sv TL
we have
@f = = 2 . TRn
(w, 520,20, AOw) €L vw € L[S, THR™).
Since (r,q) € L, we have for all w € L%([S, T];R"),

(.0, 22,20, 800)) = (r+ 9 (200,50 ¢.w) 20
Therefore
o1

r(t) = — 52 (620, a(0)"(t) ae.,

ie.,

~B(t) = 96,20, 6A)PO) 2

Next we return to our problem with endpoint constraint.

Theorem 3.3. Suppose that (Z,7) is optimal to the endpoint constrained op-
timal control. Then there exists an absolutely continuous function p such that

i) (Adjoint egquation)

B0 = L ,20,30)P0) ae in 5,7
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i) (Mazimum principle)

max <p(t), f(t,;i(t);u)> = <p(t}, f(i,:f(t),ﬂ{t))> ae. in [S,T)

uelU(t)
iii) ( Transversality condition)
(p(S), —p(T)) € V((5),z(T)) + Ne(2(S), 2(T)).

Proof. Note that there exists ¢ > 0 such that the process (Z, %) is optimal with
respect to all feasible processes (z,u) satisfying ||z — ||z < 8. We consider
the following perturbated problem P(a) for some a € R™ x R™:

minimize  Y(z(S), z(T))
subject to &{t) = f(t,z(t),u(t)) ae. te][ST]
u(t) eU(t) ae te[S,T]
(2(8), 2(T) € C +{a}
lz—zlf <4
Denote the infimal cost of P(a} by V(a) which is called the value function. The
process (Z, 1) is a minimizer for P(0), in other words,
(10) V(0) = 9(z(5), 2(T)).
By [4, p.121], the value function V is lower semi-continuous at 0 € R" x R™.
Since V is lower semi-continuous and V{0) < oo, V has a proximal subdif-

ferential ¢ at 0. This means that there exist o > 0 and M > 0 such that for
all e satisfying |le]] < a,

(1) Vi{e)=V(0)>(¢-e— Mle|%
Define
J((m,u),0) = $(@(S),z(T)) = ¢ - (2(S), 2(T)) — ¢) + M||(2(S), &(T)) - ¢|*.
Since (z(S), z(T)) € C + ({=(S),={T)) ~ cfor any c € C,
(12) Y(x(S),2(T)) = V{(2(5),2(T)) - ¢).
We have from (11), (12), and (10)
J((z,u),c) - J((%, 1), (2(5),%(T)))
> V((x(S),2(T)) = ¢) = V(0) = ¢ - (((S), 2(T)) — ¢) + M||(w(5), z(T)) - ¢]]?
for all ¢ € C and all (z,u) satisfying
z(t) = f(t,z(t),u(t)) ae t€[ST]
u(t) e U{t) ae. te[S,T)
llz — Z|| < min{d,a}.
Set (z,u) = (z,4) in (3). Then for all ¢ € {c € Clljc — ((S),Z(T)II* < o}
J((z,1),c) - J(Z,8), (2(5),2(T))) 2 0

and so

~(- ((2(8),2(T)) = ¢) < M[|(&(S),(T)) = c||*.
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This inequality implies that
—¢ € NE((8), 2(T)).-
Now set ¢ = (£(S), Z(T)) in (3), Then by (11)
J((z, ), (2(5),2(T))) — J((z, @), (2(S5),2(T))) = 0.
We see that the process (Z, @) is a minimizer for the following problem:

minimize  $(a(S),2(T)) ~ ¢ - (a(S), 2(T)) ~ (&(S), Z(T)))
+M|(2(S5),2(T)) — (2(S), 2(DHI?
subject to  Z(t) = f(t,z(t),u(t)) ae. t€]S,T]
u(t) € U(t) ae. t€]S5,T)]
lz — Z|| < min{d, a}.

This is an endpoint constraint-free problem. We can so apply the above Propo-
sition 3.2 to obtain the conclusions. O
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