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COMMON FIXED POINT THEOREMS FOR CONTRACTIVE
TYPE MAPPINGS AND THEIR APPLICATIONS IN
DYNAMIC PROGRAMMING

ZEQING Liu, LiL1 WANG, HYEONG KuG KIM, AND SHIN MIN KANG

ABSTRACT. A few sufficient conditions for the existence and uniqueness of
fixed point and common fixed point for certain contractive type mappings
in complete metric spaces are provided. Several existence and uniqueness
results of solution and common solution for some functional equations and
system of functional equations in dynamic programming are discussed by
using the fixed point and common fixed point theorems presented in this

paper.

1. Introduction and Preliminaries

Bellman (2] first studied the existence of solutions for some classes of func-
tional equations arising in dynamic programming. Bellman and Lee [3] pointed
out that the basic form of the functional equations in dynamic programming
is as follows:

(1.1) flz) = SggH(w,y,f(T(w, v), VzeS,

where opt represents sup or inf, z and y denote the state and decision vectors,
respectively, T stands for the transformation of the process, and f(z) represents
the optimal return function with the initial state x. Afterwards, Baskaran
and Subrahmanyam [1], Bhakta and Choudhury [4], Bhakta and Mitra [5],
Chang and Ma [6], Liu [8]-{10], Liu, Agarwal, and Kang [11], Liu and Ume
[12], Pathak and Fisher [13], Zhang [15] and others investigated the existence
and uniquensss of solution and common solution for some kinds of functional
equations and systems of functional equations, which include the functional
equation (1.1) as a special case, arising in dynamic programming under several
suitable agsumptions.

Received December 18, 2007.

2000 Mathematics Subject Classification. 54H25, 49L20, 49L99.

Key weords and phrases. common fixed point, contractive type mappings, complete met-
ric space, common solution, functional equation, system of functional equations, dynamic
programming,

This work was supported by the Science Research Foundation of Educational Department
of Liaoning Province (20060467).

(©2008 The Korean Mathematical Society
573



574 ZEQING LIU, LILI WANG, HYEONG KUG KIM, AND SHIN MIN KANG

Ray [14] established two common fixed point theorems for the following self
mappings f, g and h in a complete metric space (X, d):

(1.2) d(fz,gy) < d(hz, hy) — w(d(hz, hy)), Vz,y € X.
Liu [7] introduced and studied a class of contractive type mappings below:

d(fz,gy) < max{d(hz, hy), d(hz, fz),d(hy, gy)}

(13) — wimax{d(hz, hy),d(he, fz), d(hy, gy)}), Vay € X,

and established commeon fixed point theorems for the class of mappings in a
complete metric space (X, d).

The main aim of this paper is to give several sufficient conditions which
guarantee the existence and uniqueness of common fixed point for the following
contractive type mappings in a complete metric space (X, d):

d(fz, gy)
< max {d(he, hy), d(ha, £2), d(hy, gu), 51d(ha, ) + d( F2, 90)
i )00 09) dle Sl |
(1.4) 14+d(fz,g9y) 1+ d(hz, hy)
— w( max {d(hz, hy), d(ha, fa), d(hy, 99), Sld(ha, ) +d(f2, g),
= ). s

As applications we use the fixed point and common fixed point theorems
presented in this paper to discuss the existence and uniqueness problems of
solution and common solution for the following functional equation {1.5) and
system of functional equations (1.6), respectively, arising in dynamic program-
ming:

(1.5) f(z) = opt {u(z,y) + H(z,y, f(T(z,y)}, VzeS$
yeD

and
(1.6)  fi(z) = 55; {u(z,y) + Hi(z,y, i(T(z,9)))}, Vze S, ie{1,23}
Throughout this paper, we assume that R™ = [0, +00), R = (—00, +00), w
and N denote the sets of all nonnegative and positive integers, respectively, and
W ={w|w:R" — R is a continuous mapping with 0 < w(t) < t for all £ > 0}.
For a self mapping f in a metric space (X, d), define
Cs(X)={g|g: X — X is continuous and gf = fg}.

Let I denote the identity mapping in X.
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2, Common fixed point theorems for contractive type mappings

In this section, we prove several fixed point and common fixed point theorems
for some classes of contractive type mappings in a complete metric space (X, d).
For self mappings f, g and h in (X,d) and zo € X, put d,, = d(hzp, hTni1)
for all n € w. Our main results are as follows:

Theorem 2.1. Let (X,d) be a complete metric space and f,g and h be three
self mappings in X with h € Ct(X)NCy(X) and f{X)Ug(X) C h(X). If there
exists a w € W satisfying (1.4}, then f, g ond h have a unique commeon fized
pownt in X.

Proof. Let xg be any point in X. According to f(X)Ug(X) C h(X), we choose
a sequence {z,}ne, € X such that fzo, = hxe,y1 and gzons1 = hTonyo for
any n € w. By (1.4) we deduce that

d(fxon, 9Ton+1)

< max {d(hx%a hzoni1), d(hzon, fron), d(hzanit, Q$2n+1)7
1
5 [d(thTla hz?’n—!—l ) + d{foTw GT2n+1 )])
d(hzon, fTan)d(hToni1, 9Tons1)
1+ d(fron, gzans1)
d(hxon, fron)d(hTon i1, 9%2n+1) }
1+ d(haoq, hxont1)

k)

- w( max {d(hxzn, hzon 1), d(hxan, fTon), d(hzani1, 9Zont1),

1
3 [d(hzon, hxont1) + d(fTon, gTan+1)]s
d(hxzn, fﬁ‘»‘2n)d(h??2n+1 s 9$2n+1)

14 d{fzon, 9Ton+1) ’

d(hon, fran)d(hToni1, 9Toni1)
, Vneuw,
1+ d{hzan, h.’EQn_H) }) new

which means that

d2n+1

IN

dondon+1 dondon+1 }
1+ d2n+1 ’ 1+ C§2n

dondony1 dondonyr })
1+ dony1’ 1+dap

= max{dgn,d2n+1} - w(max{dzm d2n+1}), Vn € w.

1
max {d2m dZny d2n+17 §{d2n + d2n+1}7
2.1)

1
- w( max {dgn, don, dont1, §[d2n + dont1),s

Suppose that dop1 > day, for some n € w. In view of (2.1) it is easy to verify
that dopi1 < donti — w{dani1) < dans1, a contradiction. Consequently, we
infer that don+1 < day, and 80 dopy < day, —w(doy,) for any n € w by (2.1). In
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a similar manner, it can be shown that do, < dop—1 —w(dap—1) foralln € N,
It follows that

(2.2) dn < dn—1 ~w(dn-1), YneN.
Next, we prove that

(2.3) lim d, = 0.

n—00

Note that (2.2) means-that

k3
Zw(di) <do—~dns1 < dp
=0

for all » € w and {dp}ne, is a decreasing sequence. Whereas the series
Y2 o w(dn) and the sequence {d,, }ne. are convergent. It is clear that limp,—co
w(d,) = 0 and there exists some point p € R such that lim, ..o d, = p. In
terms of the continuity of w, we derive that lim,_,o, w(d,) = w(p) = 0. This
means that p = 0, that is, (2.3) holds.

In order to show that {hz,}ne. is a Cauchy sequence, we need only to
prove that {hzo, }neo is @ Cauchy sequence. Suppose that {hzo, }tne. is not
a Cauchy sequence. Thus there exists some ¢ > 0 such that, for any even
integer 2k, there are even integers 2m(k) and 2n(k) with 2m(k) > 2n(k) > 2k
and d(hZam(k), Mon(k)) > € Further, let 2m(k) denote the least even integer
exceeding 2n(k) which satisfies that 2m(k) > 2n(k) > 2k,

(2.4) d(hTom(k)—2, hTonk)) <€ and  d(hZom(ry, MEan(r)) > €
Notice that for any £ € N

d(hTomk), hTank)) < dom(k)-1 + dom(k)-2 + AhTam)—2, ATanw) ),

|d(hz2m (k) s A an(ry+1) — A(ATom k), haniy)| < dongiys

|d(ham (k) +1> BEan(e)+1) — AhTamky, he2ny+1)| < domky,

|d(hZom k)41, hTon(k)+2) — AAT2mk)+1, B2 k) +1)] < dongry+1-
Following (2.3}, (2.4) and the above inequalities, we infer that

€= kll’n;o d(hTom k), hon(k))
= kli{go d(hTam(ky> MTon(k)+1)

2.5 .
25) = 191320 d(hxzm(k}ﬂyhxzn(k)ﬂ)

= klir{.lo d(hZom(k)+1, hE2n(k)+2)-
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Using (1.4) again, we have, Yk € N,

d(f$2m(k) :ngTe(k)+l)

< max {d(hﬁzmaﬁ), P on(k)+1)s dam (k) on(i) +15

1
3 [d(hTomk) s hZ2nky+1) + A Tamk) 9T2n(k)+1)]s

Aom(k) Don(k)+1 dom(k) Bon(k)+1 }
1+ d(fZomikys 9Zan(k)+1) 1+ d(hTamk)s Mo2n(k)+1)

—w ( max {d(thm(k)r hZon(ky+1)s B2m(k)» Don(k)+15

1
g{d(hxzm(k), RZon(k)+1) + A FTom(k) 9Z2n(k)+1))s

dom(k)don(k)+1 dom(k)don(k)+1 })
L4 d{fZomnys 9Zon(ry+1) 1+ d(RZomkys heony+1) 2/

Letting k — 00, by (2.5) we deduce that

€ < max{e, 0,0,¢,0,0} — w(max{¢0,0,¢0,0})
=e¢—wle) <
which is absurd, and hence {hz,}ne. is a Cauchy sequence. It follows from

completeness of (X, d) that {hz,}ne, converges to a point « € X. Since h €
C#(X) N Cy(X), we infer that

hu= lim fhxs, = lim hfzy, = lim hhzop+
(2.6) n—00 n—oe n—+o0
= lim ghxony; = lim hgxo,y1 = lim hhzonio.

TL=+00 n—o0 n—0o

By virtue of (1.4) we get that

d(fu, ghzon1)
< max {d(hu, hhzoni1), d(hu, fu), d(hhzany1, ghzonii),

1
5 ldlhu, ’hwani1) + d(fu, ghwans1)l,

d(hu, fu)d(hh@onts, ghwons1) d(hu, fu)d(hhzoni1, ghzoni1) }
1+ d(fu, gh.’Egn.H) ’ 1+ d(h’tj, hh$2n+1)
- ’LU(III&X {d(hua hhx2n+1)) d(hu, fu), d(h'thn-{-l y ghw2n+1)’

1
E[d(hu, hhzoni1) + d(fu, ghzony 1)),

d(hu, fu)d(hhzany1, ghtan1) d(hu, fu)d(hhZony1, ghToni1) )
1+ a’»(fu3 gh$2n+1) ’ 1+ d(hu, hhﬂ:gn.;_l) ’
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As n — oo in the above inequality, it follows from (2.6) that
1
d(fu, hu) < max{O,d(hu, fu},0, §d(fu, hu),0,0}

- w(max {0, d(hu, fu),0, %d(fu, hu}, 0, 0})
= d(hu, fu) — w(d(hu, fu)),

this gives that fu = hu. Similarly we obtain that hu = gu. In light of (1.4) we
conclude that
d(fhzon, 9T2n11)

< max {d(hhl‘zm hZont1), d(hhzon, fhzen), d(hzont1; 9Ton+1),

1
2 [d(hhzon, htant1) + d(fhzon, gToni1)],

d(hh:ﬂgn, fhxgn)d(h$2n+1, gx2n+1)
14 d(fhzon, 9T2n+1)

d(hhzon, fhzon)d(hTont1, 9Ton+1) }
1+ d(ﬁhfl)gn, h$2n+1)

—w ( max {d{hhxgn, heanst), dhh@an, fhian), d(htonit, 9Tons1),

3

1
3 [d(hh@on, htani1) + d(fhzon, 9Zant1)]s

d(hh.’l)zn, fhxzﬂ)d(hx2n+1 5 g$2n+1)
1+ d(fhzon, gTons1)
d(hhxon, fhaon)d(hE2n11,9%on+1)
1+ d(hh$2n,h$€2n+1) })7 n € w.

2

Taking the limit as n — oo, from (2.6) we conclude that

d(hu,u) < max {d{hu, u), d(hu, hu), d(u, u), d(hu, u),
d(hu, hu)d(u,u) d{hu, hu)d(u,u) }
1+ d(hu,u) * 14 d(hu,u)
—w ( max {d(hu, u), d(hu, hu), d(u, u), d{hu, u),
d(hu, huyd(u, u} d(hu, hu)d(u, u) })
1+d(hu,u) ~ 1+ d(hu,u)
= d{hu, u) — w(d{hu,u)),

which ensures that hu = u. Thus, u is a common fixed point of f, g and h.
If v € X \ {u} is another common fixed point of f, g and A, from (1.4) we
immediately infer that

d(u,v) = d(fu, gv) < d(u,v) — w(d(u,v)),
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which implies that 4 = v. Hence f, g and h have a unique common fixed point
u € X. This completes the proof. O

As in the proof of Theorem 2.1, we have

Theorem 2.2. Let (X, d) be a complete metric space and f,g and h be three
self mappings in X with h € Cp(X)NCy(X) and f(X)Ug(X) C h(X). If there
exists a w € W satisfying

(S, 99) < meve {d(ha hy), d(ha, fo), d(hy, gu), 3 [d(ha, ) +d(fz.gu)]},
- w(max {d(hx, hy), d{hz, fr), d(hy, gy),

1
5 ld(hz, hy) + d(fx,gy)]}), Vz,y € X,
then f, g and h have o unique common fized point in X.
Taking h = I in Theorem 2.1, we obtain the following:

Theorem 2.3. Let f and g be two self mappings from o complete metric space
(X, d) into itself. If there exists a w € W satisfying

d(f2.99) < max {d(a, ), d(z, f2), 40, ). 3 [0z, ) + (2, 90),
d(z, fx)d(y, gy) d(ﬂc,f&?)d(y,gy)}
1+d(fz,gy) * 1+ d(z,y)
- w(max {d(o, ), d, f2),d(v, gv), 31d(z.9) + (S, ),

d(z, fx)d(y, gy) d(z, fz)d(y, gy)
1+d(fz,gy) = 1+d(z,y)
then f and g have a unique common fized point in X.

}), Vr,y € X,

In case f = g in Theorem 2.1, we gain the following:

Theorem 2.4. Let f and h be two self mappings from a complete metric space
(X, d) into itself with h € C¢(X) and f(X) C h(X). If there exists a w € W
satisfying

d(fz, fy)
Smﬂwwwmwmmww{WWHWMm
d(hz, fz)d(hy, fy)} d(hz, fz)d hy,f?/)}
1+d(fz, fy) 1+ d(hz, hy)
~ w( max {d(he, hy), d(hz, f2), d(hy, fy). 5 dlh, hy) + d(fo. fy),

diha, fz)d(hy, fy) d(hz, fz)d(hy, fy)
1+d(fz, fy) ~ 1+d(ha, hy) }) Vr,y € X,

then f and h have a unigque common fized point in X.
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Letting h = I in Theorem 2.4, we get the following:
Theorem 2.5. Let f be a mapping from a complete metric space (X, d) into
itself. If there exists a w € W satisfying
1
d(fa, fy) < max {d(z,), d(z, f=),d(y, fy), 5ld(z,v) + d(fz, fy))

d(z, fz)d(y, fy) dlz, fz)dly, fy) }
14+d(fz, fy) ° 1+d(z,y)

~w(max {d(z,v), da, f2), d, f4), 5 d(a,) +d(Fz, ),

d(z, fx)d(y, fy) d(z, fz)d(y, fy)
1+d(fz, fy) ' 1+d(z,y) })’ Vo, y € X,

then f has a unique fized point in X.

3. Existence and unigueness of common solution for systems of
functional equations

Throughout this section, let X and Y be Banach spaces, S C X be the state
space and D C Y be the decision space. B(S) denotes the set of all real-valued
bounded functions on S. Put

d(a,b) = sup |a(z) — b(z)|, Va,be B(S).
z€S
It is obvious that (B(S), d) is a complete metric space. Define v : § x D — R,
T:SxD—Sand H;: SxDxR—Rforie{1,2,3}.
Now we study those conditions, which guarantee the existence and unique-

ness of solution and common solution for the functional equation (1.5) and the
system of functional equations (1.6), respectively.

Theorem 3.1. If the following conditions are satisfied:
(C1) u and H; are bounded for i € {1,2,3};
(C2) there exists a w € W satisfying
lHl (x} Y, G,(t)) - Hz(.’l), Y, b(t)){
1
S max {d(f:ia'a f3b)7 d(f3a7 fla)7 d(be: f?b)a i{d(fiia: f3b) + d(fla: be)]3

d(fsa, fia)d(fsb, f2b) d(fsa, fra)d(f3b, be)}
1 + d(flav be) , 1 +d(f3a) be)

—w( max {d(fsa, fb), (0, fra), d(fsb, f28), 3 [d(fsa, fob) + (o, ),

d(faa, f1a)d(f3b, f2b) d(fsa, fra)d(fsb, f2b) })
1+d(fia, fob) °  1+d(fsa, f3b)
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forall (z,y) € Sx D, a,b € B(S) and t € S, where the mappings f1, f2 and f3
are defined as follows: Vx € 5, a; € B(S), i € {1,2,3},

(3.1) fiai(z) = opt {u(z,y) + Hi(z,y,a:(T(z,y))) };
yeD

(C3) f1(B(S)) U f2(B(S)) € f3(B(S)) and f3 € Cp, (B(S)) N Cr, (B(S)),
then the system of functional equations {1.6) possesses a unique common solu-

tion in B(S).

Proof. 1t follows from (C1) and (C2) that fi, fo and f3 are self mapping in
B(S). Let a,b € B(S) and z € S. We now have to consider two possible cases:

Case 1. Suppose that optyep = supyep. For any € > 0, there exist y,z € D
satisfying

f}&(il?) < u(l‘vy) + Hl(zv:‘ha(T(m} y))) +6€,
fab(x) < u(z,z) + Ho(z, 2,b(T(x, 2))) + ¢,

(32)
fla(x) > 'll:(l', Z) + Hi(l', Z7Q(T(x) Z)))a

(@) 2 (o, y) + Hal, 6T (,))).
Combining (3.2) and (C2), we arrive at
| fralz) — f2b(z)]
< e max {[ B (@,,a(T(,))) ~ Falz, v, 6T (),
|Hi(z, 2, a(T(z, 2))) — Ha(z, 2,b(T(z, 2)))|}
< e+ max {dlfsa, fob), d(fsa, fra), d(fab, J2b), 5ldfsa, fab) + dlfra, SV,

d(fsa, f1a)d(f3d, f2b) d(faa, fia)d(f3b, fzb)}
1+d(fia, f2b) 1+ d(fsa, f3d)

— w( max {d(fsa, fsb), d(fs0, f1a),d(fsb, ), 5[d( s, fob) + d(fra, 128

d(f3a, f1a)d(fsb, f2b) d(f3a, f1a)d(fsb, f2b) })
1+d(fia, fob) ~ 14d(fsa, f3d) ’

which yields that
d(fr0, £2b)
< ¢+ max {d(fsq, f3b), d(fsa, f10), d(f3b, fab),

S1dsa, fa) + d(fr, b)),

d(fsa, fia)d(f3b, fob) d(faa, fra)d(fsb, f2b)
14+ d(fia, fab) ~  1+4d(fsa, f3b)

(3.3)
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—w( max{d(fza, fsb), d(fse, f1a), d(fsb, f2b),

%[d(fsa, fab) +d(f1a, f2b)]

d(f3a7 fla’)d(f?)ba f2b) d(f3a> fla)d(f3ba f2b> })
L+d(fia, fob) 7 1+d(fsa, f3b) ‘

Case 2. Suppose that opt,ep = infyep. By using a method similar to the
proof of Case 1, we infer that (3.3) holds also.
Letting € tend to zero in (3.3), we gain easily that

d(f1a, f2b)

< max {d(fsa, f3b),d(fsa, fia), d(f3b, f2b), %[d(fa&a fab) + d(fia, fab)],

d(fsa, fra)d(fsb, f2b) d(fsa, fra)d(fsb, fob) }
1 +d(fla'a be) ’ 1 ‘*‘d(fg&, f3b)

~ w{ max {d(fsa, f5b), d(fsa, Fa), d(fsb, f2b), 3 [d(Jsa, fab) + d( e D),

d(f3a, fra)d(f3b, f2b) d(fs%fﬂ)d(f:ab,fzb}})
1+d(fla7 f2b) ’ 1 +d(f3a7f3b) .

Therefore, Theorem 2.1 ensures that fi, f> and f3 have a unique common fixed
point v € B(S}. That is, the system of functional equations (1.6) possesses a
unique common solution v € B(S). This completes the proof. O

It follows from Theorem 2.2 and Theorem 3.1 that

Theorem 3.2. Assume that (C1), (C3) and the following condition are satis-

fied:
{C4) there exists a w € W satisfying

|H1($, Y, a(t» - H2($7 ¥, b(t))]
< max {d(fsa, fu8), d(fso, f1a), (b, f20), 51d(fsa, Fsb) + (e, f0)]
— w( max {d(fsa, f3b), dlfsa, fra), d(fsb, f20), 3 [dlfsa, £sb) +d(fra, 120)} )

for all (z,y) € SX D, a,b € B(S) and t € S, where the mappings fi1, f» and f3
are defined by (3.1). Then the system of functional equations (1.6) possesses a
unique common solution in B(S).

In case f3 = I in Theorem 3.1, we conclude that

Theorem 3.3. Suppose that the following conditions hold:
(C5) u and H; are bounded for i € {1,2};
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(C6) there exists a w € W satisfying
‘Hl (CL‘, Y, a(t)) - HZ(:I:u Y, b(t))|

< max {d(a,b),d(a, f1a), d(b, f26), -;—[d(a, b) + d(f1a, f2b)],
d(av flaf)d(b) be) d(av fla)d(b’ be) }
1+ d(fia f2b) © 1+d(ab)
~ w(‘max {d(a,t), d(a, fi0),d(b, f), 3[d(e,b) + d(fra, fob),

d(a‘$ fla)d(bv f2b) d(av fla)d(b) f?b) })
14+ d(f1a, fgb) ! 1+ d(a, b)

for all (z,y) € S x D, a,b € B(S) and t € S, where the mappings fi and fo
are defined as follows:

fiai(z) = opt {u(a:,y)+Hi(w,y,ai(T(:E,y)))}, Vz €S, a; € B(S)7 S {172}'
yeD
Then the system of functional equations
filz) = opt {ul@,y) + Hi(z,y, fi(T(z,v)))}, - Vz €8, i€ {1,2}
Y

possesses a unique common solution in B(S).
Taking f1 = f, in Theorem 3.3, we get the following:

Theorem 3.4. Suppose that (C5) and the following condition hold:
(C7) there exists a w € W satisfying

|Hi(2,y,a(t)) — Ha(z,y,b(0)))|

< wmax {d(a,), d(e, fa),d(b, /), 5[d(a,b) + d(fa, &),
d(a, fa)d(b, fb) d(a, fa)d(b, b)
1+d(fa, fb) ° 1+d(a,b) }
—w ( max {d(a, b), d(a, fa),d(b, fb), %[d(a, b) + d(fa, fb)],
d(a, fa)d(b, fb) d(a, fa)d(b,fb)})
1+d(fa, fb) * 1+d(a,b)

for all (z,y) € S x D, a,b € B(S) and t € S, where the mapping f is defined
as follows:

fa(z) = ogg {u(a:,y) + H(:v,y,a(T(as,y)))}, Vz €8, a€ B(S).

Then the functional equation (1.5) possesses a unique solution in B(S).
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