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STABILITY OF A QUADRATIC FUNCTIONAL EQUATION
IN QUASI-BANACH SPACES

ABBAS NAJATI AND FRIDOUN MORADLOU

ABSTRACT. In this paper we establish the general solution and investigate
the Hyers-Ulam—Rassias stability of the following functional equation in
quasi-Banach spaces.

> f@ite—am—w)=2 Y. flzi—),
1<i<j<a 1<i<j<4
12K<1%4
k,lélij

where I;; = {1,2,3,4}\{i,5} for all 1 < i < j < 4. The concept of Hyers-
Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem
that appeared in his paper: On the stability of the linear mapping in
Banach spaces, Proc. Amer. Math. Soc. 72 (1978}, 297-300.

1. Introduction and preliminaries

In 1940, S. M. Ulam [16] gave a talk before the Mathematics Club of the
University of Wisconsin in which he discussed a number of unsolved problems.
Among these was the following question concerning the stability of homomor-
phisms.

Let (G1,%) be a group and let (Ga,0,d) be a metric group with the metric
d(-,-). Given ¢ > 0, does there exist a 6(c) > O such that if a mapping h: G; —
G, salisfies the inequality

d(h(z *y),h(z)oh(y)) < ¢
for all z,y € Gy, then there is a homomorphism H : Gy — Go with
d(h{z),H(z)) < ¢
for all x € G417

In 1941, D. H. Hyers [8] considered the case of approximately additive map-
pings f : E — E’, where E and E’ are Banach spaces and f satisfies Hyers
inequality

Ifz+y) - fle) - Flyll < e
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for all z,y € E. It was shown that the limit

L&) = tim 122

n—oo 2%

exists for all z € E and that L : E — E’ is the unique additive mapping
satisfying
I1f(z) - L{z)|| < e

In 1978, Th. M. Rassias [13] provided a generalization of Hyers’ theorem
which allows the Cauchy difference to be unbounded.

QQuadratic functional equation was used to characterize inner product spaces
[1,2,9]. Several other functional equations were also to characterize inner prod-
uct spaces. A square norm on an inner product space satisfies the important
parallelogram equality

e+ yli* + |z = ylI” = 2(l=]|* + 1|).
The functional equation

(1.1) fle+y)+ flz—y) =2f(z) + 2/ ()

is related to a symmetric bi-additive function [1, 11]. It is natural that each
equation is called a quadratic functional equation. In particular, every solution
of the quadratic equation (1.1) is said to be a quadratic function. It is well
known that a function f between real vector spaces is quadratic if and only if
there exists a unique symmetric biadditive function B such that f{z) = B(z, z)
for all z (see [1, 11]). The biadditive function B is given by

(1.2 Blz.y) = 7 [fe +v) — Sz — )]

A Hyers-Ulam stability problem for the quadratic functional equation (1.1}
was proved by Skof for functions f : E1 — E», where E; is a normed space and
E; a Banach space (see [15]). Cholewa [4] noticed that the theorem of Skof
is still true if the relevant domain E is replaced by an Abelian group. In the
paper [5], Czerwik proved the Hyers-Ulam—Rassias stability of the quadratic
functional equation (1.1). Grabiec [7] has generalized these results mentioned
above. Jun and Lee [10] proved the Hyers-Ulam-Rassias stability of the Pex-
iderized quadratic equation (1.1).

Throughout this paper I;; = {1,2,3,4}\ {5,j} forall1 <i < j < 4. In
this paper, we deal with the next functional equation deriving from quadratic
function:

(1.3) > f@itzi—ze-z)=2 Y flzi— ).
1<i<j<4 1<i<s<4
12k<IZ4e
klel;

It is easy to see that the function f(z) = az? is a solution of the functional

equation (1.3). The main purpose of this paper is to establish the general solu-
tion of Eq. (1.3) and investigate the Hyers~Ulam—Rassias stability for Eq. (1.3).
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We recall some basic facts concerning quasi-Banach spaces and some pre-
liminary results.

Definition 1.1 (3], {14]). Let X be a real linear space. A gquasi-norm is a
real-valued function on X satisfying the following:
(i) Izl > 0 for all z € X and ||z|| =0 if and only if z = 0.
(i) Azl = |Alllz|| forall A € R and all z € X.
(iii) There is a constant K > 1 such that ||z + y|| < K(||z|| + |ly]}) for all
z,yc X.

It follows from condition (iii) that
2n+1 2n+1

<k Y ad, |30 e <5 3 po
i=1 i=1 =1

2n

e

i=1

for all integers n > 1 and all zy,22,...,Z2n41 € X.
The pair (X, ]| - ||) is called a quasi-normed space if || - || is a quasi-norm
on X. The smallest possible K is called the modulus of concavity of || - ||. A

quasi-Banach space is a complete quasi-normed space.
A quasi-norm || - || is called a p-norm (0 < p < 1) if
Iz +yl” < Il + lyl”

for all z,y € X. In this case, a quasi-Banach space is called a p-Banach space.
By the Aoki-Rolewicz theorem [14] (see also [3}), each quasi-norm is equiv-

alent to some p-norm. Since it is much easier to work with p-norms than

quasi-norms, henceforth we restrict our attention mainly to p-norms.

2. Solutions of Eq. (1.3)

Throughout this section, X and Y will be real vector spaces. Before pro-
ceeding the proof of Theorem 2.3 which is the main result in this section, we
shall need the following lemmas.

Lemma 2.1. A function f : X — Y satisfies (1.3) for all 21,22,23,74 € X, if
and only if the function [ is quadratic.

Proof. Let f satisfy (1.3). Letting z; = 23 = z3 = x4 = 0 in (1.3), we get that
f(0) = 0. Setting z; = z and 22 = 23 = 24 = 0 in (1.3), we conclude that
f(=z) = f(z) for all z € X. This means that f is an even function.

Letting x; = 22 = 2 and z3 = 24 = 0 in (1.3), and using the evenness of f,
we get f(2x) = 4f(z) for all x € X. Letting x5 = z4 = 0 in (1.3), and using
the evenness of f, we get

2f(z1 + 22) +4f (21 — 22) = 2f (21 — 22) + 4f (71) + 4f(22)
for all 1,25 € X. Therefore

f(@1+ m2) + fz1 — 22) = 2f(21) + 2f(22)
for all 1, x5 € X. Therefore the function f : X — Y is quadratic.
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Conversely, let f be a quadratic function. So

(2.1)

flxr+ 22 — 23 —z4) + floy + 24 — 20 — x3) = 2f (21 — x3) + 2f (22 — 24),
(2.2)

f(:::l + 23 — 22 —$4)+f(2?1 +24 —2Zo —:l:3) :?f(x}_ *.%2)—'—2.)0(:33 ‘34),
(2.3)

f(xl + B2 — &3 — .’114) + f($1 + 23— Ty — $4) = 2f(:l71 - l‘4) + Zf(IQ — 163)
for all z1,z9, 23,24 € X. Since f is even, then we conclude from {2.1), (2.2),
and (2.3) that the function f satisfies (1.3). O
Lemma 2.2. A function f : X — Y satisfies (1.3) for all x1,20,23,24 €
X\ {0}, if and only if the function f is quadratic.

Proof. Suppose that the function f satisfies (1.3) for all z1, 22,23, 24 € X\ {0}.
Letting 1 = z2 = @3 = 4 in (1.3), we get that f(0) = 0. So by letting
1 =23 =z and T3 = 24 = — in (1.3), we get
(24) fldz) + f(—4z) = 8f(2x)
for all z € X \ {0}. It follows from (2.4) that the function f is even. So if we
put £z = x4 = z in (1.3), we have
(2.5) fl@y+2o —22) + f(z1 —22) = 2f (21 — ) + 2f (@2 — 2)
for all z,z1,22 € X \ {0}. Let u,v € X and let z € X \ {0, —u, —v}. Putting
T =2,z =u+z and o = v+ z in (2.5), we get that

Flu+0) + Fu=v) = 2/(w) +2/(0).
Therefore the function f is guadratic.

The converse is evident by Lemma 2.1. O

Now we are ready to find out the general solution of (1.3).

Theorem 2.3. A function f : X — Y satisfies (1.3) for all z1,22,23,24 €
X, (&1, 22, 23,74 € X\ {0}) #f and only if there exists a symmetric bi-additive
function B: X x X =Y such that f(z) = B(z,z) for all z € X.

Proof. The result follows from Lemma 2.1, Lemma 2.2, and Proposition 1,
p. 166 of [1]. O

3. Hyers-Ulam—Rassias stability of Eq. (1.3)

Throughout this section, assume that X is a quasi-normed space with quasi-
norm | - ||x and that Y is a p-Banach space with p-norm || - ||y Let K be the
modulus of concavity of ||.||y.
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In this section, using an idea of G&vruta [6] we prove the stability of Eq. (1.3)
in the spirit of Hyers, Ulam, and Rassias. For convenience, we use the following
abbreviation for a given function f: X — Y :

Df(z1,22,73,24) = E flaei+z; —ap—ay) — E flx: —x;)
1gigj<d 1<i<j<4
1<k<I<4
kilel;

for all z1, %2, 23,24 € X.

Notation. Let X be a linear space. z € X* means z € X or z € X \ {0}.

We will use the following lemma in this section.

Lemma 3.1 ([12]). Let 0 < p < 1 and let x1,x2,...,T, be non-negative real

numbers. Then
( Z xl> < Z T,

Theorem 3.2. Let ¢ : X* — [0,00) be a function such that

. Iy T2 T3 T4
(3-1) R T T
T T
(3.2) § 4P P ( 21,21, 22,—5) < oo

for all z,21,20,23,24 € X. Suppose that o function f : X — Y satisfies the
inequality

(3.3) [Df(z1, 22,23, 24)lly < (21,22, 23, 24)
for all xy,x9, 23,24 € X. Then the limit

e T
(3.4) Q(z) := nli)n;oll f(2—n)

exists for all z € X and Q : X — Y s a unique quadratic function satisfying

35)  15@ - Q@ly < 35 { (5 ) 1p(2a) + (22 + Fla)
forallz € X.

Proof. Letting 11 =22 =z and 3 = 24 = —z in (3.3), we get
(3.6) I1f(4z) + f(—4z) - 8f(22)lly < p(z,2, ~2,—7)
for all z € X. Replacing by —z in (3.6) and using (3.6), we get
61 150 - f-2)ly < % [ole, 7, -2, ~2) + oz, ~7,7,2)]

for all z € X. Replacing z by 2z in (3.7) and using (3.6), we get
(3-8) If (4z) = 4f 2z)|ly < v(2)

2
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for all z € X, where

K? K
~v(z) = 6 [4,0(2:3, 2z, -2z, -22) + p(-2z, -2z, 2z, 2:17)] + 390(@ T, —~T, —).

If we replace z in (3.8) by %% and multiply both sides of (3.8) to 4™, then we
3

have

(3.9)

k3

4n+1f(2n+1) ‘4nf(2$_n) v <4 ’7(212—2)

for all z € X and all non-negative integers n. Since Y is a p-Banach space, we
have

9 (m) ~ 1G] < X e 1 -3,
(3.10) T
<167 Y 47y(3)
1=m-+2

for all z € X and all non-negative integers m and n with n > m. It follows
from Lemma 3.1 that

K2\r__ - K\r_
Sarp(2) < (K e + p-20)+ (5) 00
=2
for all z € X. Therefore we conclude from (3.2) and (3.10) that the sequence
{4"f(3%)} is a Cauchy sequence in Y for all € X. Since Y is complete, the
sequence {4" f(s%)} convergesin Y for all z € X. So one can define the function
Q: X —Y by (3.4) for all z € X. Letting m = 0 and passing the limit n — co
in (3.10), we get (3.5). Now, we show that @ is quadratic. It follows from (3.1),
(3.3), and (3.4) that
Tt xz T3 T4
Df(zn 2n Zn’ Zn)
1 T2 Tz T4
< np(ZL 22003 Ay
< lim 4" 55 5 5w
for all z;,z2,z3, 24 € X. Therefore the function @ : X — Y satisfies (1.3). So
by Lemma 2.1, we get that the function @ : X — Y is quadratic.
To prove the uniqueness of @), let T : X — Y be another quadratic function
satisfying (3.5). Then

Q) - T@)I = tim 47(s) ~T(5.)]|
KP Kypr_, =z —y —

<35 Jm {(3) [P + ol + (3 | =0

forallz e X. SoQ =T. O

Corollary 3.3. Let v, : [0,00) — [0,00) be a family of functions such that

(1) ¥(ts) < Pa(t)i(s) for alit,s > 0;
(2) ¥i(1/2) < 1/4

I1DQ(z1,z2, 23, 24)|ly = hm 4"

P
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for all 1 <i < 4. Suppose that a function f: X — Y satisfies the inequality
4

(3.11) D, 32, m8,20)ly <Y willlal)
i=1

for all x1,xz2,23,24 € X. Then there exists a unique quadratic function Q :
X — Y satisfying

4 9KP gPPl 1
nm><mijZ~4@%% P}
2

Jor allx € X. The function Q : X —Y is given by (3.4).
Proof. Let ¢ : X* — [0, 00) be a function defined by

4
(21, 02,23,74) = 3 ¥il:]).
g1

It is clear that the function ¢ satisfies (3.1) and (3.2). It follows from Lemma. 3.1
and conditions (1), (2) that

- » o V2T (3)95 el - . 2= Vi ()5 (21
Plz) < 4 ]_Zl T;QALM,ZW’ ¢(—2z) = p(2z) < 477 Z W

for all z € X. Therefore the result follows from Theorem 3.2. |

=1

The following theorem is an alternative result of Theorem 3.2.

Theorem 3.4. Let ¢ : X* — [0,00) be a function such that

N—00

1
lim 4—g0(2":v1,2":132,2"a:3, 2%z4) =0,

o

5 1 o . .
(3.12) o(z) == Z YT P(2'x, 22, —2'z, —2'z) < 00

i=—1
for all z,21,22,23,24 € X. Suppose that a function f : X — Y satisfies the
inequality (3.3) for all zy,x2, 23,24 € X. Then the limit

1
Q(z) == lim Zr—tf(2":c)

erists for allx € X and Q : X — 'Y is a unique quadratic function satisfying
(3.5) forallz € X.
Corollary 3.5. Let 9; : [0,00) — [0,00) be a family of functions such that

()" i(ts) < Yit)i(s) for all t,s > 0;
(2)" ¥i(2) <4
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for all 1 < i < 4. Suppose that a function f : X — Y satisfies the inequality
(3.11) for all z1,T2,x3,74 € X. Then there exists a unique quadratic function
Q: X - Y satisfying

4 KP p
I1£#) - @@y < 16{2 e +fp)]¢"<n D}

for all x € X. The function Q : X — Y is given by
1
Q(z) := lim 4—nf(2”x)

for dlz € X.

Corollary 3.6. Let 8 > 0 and {ri}ics be non-zero real numbers such that
r; > 2 (respectively, r; < 2) for all i € J, where J is o subset of {1,2,3,4} with
|J] > 3. Suppose that a function f: X — Y satisfies the inequality

(3.13) IDf (w1, 2,23,y <0 as]%

ieJ
for all z1,29,73,24 € X*. Then there exists a unique quadratic function @ :
X — Y satisfying

1

Ko 2KP2PT 48P
1£(z) - Q@)lly < 16{ _ ] ¥

for allz € X™.
Corollary 3.7. Let 6 be a non-negative real number. Suppose that a function
f: X =Y satisfies the inequality

||Df(£131,31‘2,.’l?3,$4)“y S 0

for all x1,z2,23,74 € X. Then there exists a unique quadratic function Q :
X — Y satisfies

I1£() - Q@)ly < pog [ |7

(47 —1)
forallz € X.
Theorem 3.8. Let ¢ : X* — [0,00) be a function satisfying (3.1) and
(3.14) 24“’ 21 21,0 0) < oo

for all x € X. Suppose that a functzon f + X — Y satisfies the inequality
(3.3) for all z1,22,z3,24 € X. Then there erists a unique quadratic function
Q: X =Y satisfying

615 If@) - Q@i < {(5) 1B + F-20)] + 50}
for all x € X. The function Q : X — Y is given by (3.4).

k=10
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Proof. Letting 1 = 22 = x and z3 = 24 = 0 in (3.3), we get
(3.16) 1f(2z) + f(—2z) = 8f(z)lly < ¢(z,=,0,0)
for all z € X. Replacing ¢ by —z in (3.16) and using (3.16), we get that

K
1f(z) = f(=2)lly < 3 [p(z,2,0,0) + o(~2, ~2,0,0)]
for all z € X. Hence (3.16) implies that

(3.17) 1/(22) — 4f (@)l < ¥(z)

for all z € X, where

K? K
P(x) = —E[QO(M,M,O,O) + ¢(—22,-22,0,0)] + 790(30,:1:,0,0).

If we replace z in (3.17) by s and multiply both sides of (3.17) to 4™, then
we have

(3.18) d

4n+1f(2n+1) _4nf(§9%) ’Y < 4n¢(2n$+1)

for all z € X and all non-negative integers n. Since Y is a p-Banach space, we
have

n x maer TP
() — 4 G|
= 4 z ief ZA|P
(3.19) < 2o -4,
n+1 ) T
<47? 4PyYP(—
< i:%;l v ()

for all z € X and all non-negative integers m and n with n > m. Since

g 2
>4 () < (35) B0 +&(-20)] + (55) @)
for all z € X, therefore we conclude from (3.14) and (3.19) that the sequence
{47 f(5%)} is a Cauchy sequence in Y for all z € X. Since Y is complete, the
sequence {4" f( %)} converges in Y for all z € X. So one can define the function
Q: X —Y by (3.4) for all z € X. Letting m = 0 and passing the limit n — co
in (3.19), we get (3.15). Now, we show that @ is quadratic. It follows from
(3.1), (3.3) and (3.4),

1 X2
Df(55,52:0,0)|
f(2" 2n ) Y
. Ty T2
< i, 4G 5000 =0
for all z1,z9 € X. Therefore the function @ : X — Y satisfies (1.3). So by the
proof of Lemma 2.1 the function @ : X — Y is quadratic.

1DQ(z1,72,0,0)||y = lim 4"
00
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To prove the uniqueness of Q, let T : X — Y be another quadratic function
satisfying (3.15). Since

lim 4"”(,0( —) = lim 4"”24”10” °

n—oo n—oo 2"+1 2"‘” ’

0,0)

= lim Z 4P 21,21,0,0)=0
i=n+1

for all z € X, then it follows from (3.15) that
. T T
1Q(@) = T(@)If = Jim 47#||7(%) - T(5)||, =0
forallz € X. So @ =T. a

p

Corollary 3.9. Let ¢; : [0,00) — [0,00) be a family of functions such that
(1) ¥i(ts) < Yi(t)i(s) for allt,s > 0;
(2) ¥:i(1/2) < 1/4, ¢3(0) = 94(0) =

for all 1 < i < 4. Suppose that a function f : X — Y satisfies the inequality

(3.11) for all z1,22,z3,24 € X. Then there exists a unique quadratic function
Q: X =Y satisfying

2 P
K 2KP + 8Py )
() - mmm_1&§:——5@7—
for all z € X. The function Q : X — 'Y is given by (3.4).
Theorem 3.10. Let ¢ : X* — [0,00) be a function such that

(lah)}”

1
(3.20) lim ——-cp(2”a:1,2"a:2,2"x3,2"w4) =0
n—oo 47
and
- N
(3.21) @(z) := Xg 77 ? (25,2'3,0,0) < 00
7=

for all z,11,72,73,24 € X. Suppose that a function f : X — Y satisfies the
inequality (3.3) for all z1,z2,x3,z4 € X. Then there exists a unique quadratic
function Q : X — Y satisfying (3.15). The function Q : X —Y 1is given by

Q(z) := lim %f@"w)
for allx € X.

Proof. If we replace z in (3.17) by 2"z and divide both sides of (3.17) by 4%,
then we have

1 1., 1 "
(3.22) e [E9) = @) < ppviene)
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for all z € X and all non-negative integers n, where

2

K
P(z) = T6—[<p(2x,2m,0,0) + o(=2x, -2z, 0, 0)] + %cp(a:, z,0,0).

Since Y is a p-Banach space, we have
1 P
s
e

P o
(3.23) < ;nusz @)~ 2@,

n
<4y (i)

for all z € X and all non-negative integers m and n with n > m. Since

n+1 )

4n+l f(

:11_ (Il(;)p[(ﬁ(Z:c) + p(—25)] + (%)psﬁ(w)

Ms

i=0

for all x € X, therefore we conclude from (3.21) and (3.23) that the sequence
{Zlg f(2"z)} is a Cauchy sequence in Y for all x € X. Since Y is complete,

the sequence {4 f(2"x)} converges in Y for all # € X. So one can define the
function Q@ : X - Y by

Q(z) = lim —f(2” )

n—oQ

for all x € X. Letting m = 0 and passing the limit n — oo in (3.23), we get
(3.15).
The rest of the proof is similar to the proof of Theorem 3.8. O

Corollary 3.11. Let ¢; : [0,00) — [0,00) be a family of functions such that
(1)" whi(ts) < i(t)ei(s) for all t,s > 0;
(2) ¥i(2) <4, ¥3(0) = ¥a(0) =

for all 1 < i < 4. Suppose that a function f: X — Y satisfies the inequality

(3.11) for all 21,22,23,24 € X. Then there exists a unique quadratic function
Q: X =Y satisfying

K (< 2KP1/)”(2)+8P
”Y_lﬁ{ T —yP(2)

for all x € X. The function Q : X — 'Y is given by

1) - Q@) Wi}’

Q(x) = lim ——f(2":c)

n—oo
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Corollary 3.12. Let 8 > 0 and {r;}%, be non-zero real numbers such that
s > 2 (respectively, r1,72 < 2 and 0 < r3,74 < 2) for all 1 < i < 4. Suppose
that a function f: X —'Y satisfies the inequality

4
IDf(z1, 22, 3,24) |y <0 llzll%
i=1
for all z1,z2, 23,24 € X*. Then there exists a unique quadratic function Q :
X =Y satisfying

K8 2KP2PTi 48P 7
1£(2) - @@y < 16{Zw” 2%}

for allx € X*.

Remark 3.13. If we replace the condition (3.14) (respectively, (3.21)) by one of
the following conditions

® 321 4%pP(0,0,%,%) <oo (respectively, Y oo, 41,,@ ?(0,0, 2z, 2'z) < 00),
o S 4PpP(0,£,0,%) <oco (respectively,d o0, 1w L0P(0,2'2,0,2'z) < o0),
o Y0 4PGP(Z 0,£,0) <co (respectively, S0 m PP (24,0, 2%, 0) < o)
for all z € X, then we achieve alternative results of Theorem 3.8 (respectively,
Theorem 3.10) and their corollaries.

4. Quadratic functions

Theorem 4.1. Let 0,7,s be positive real numbers. Suppose that a function
f: X =Y satisfies the inequality

(4.1) | Df (21,22, @3, 24)lly < O(l|2:% + llzsll%)

Jor all z1,x0,23,24 € X, where 1 < i < j < 4. Then the function f : X - Y

s quadratic.

Proof. 1t follows from (4.1) that f(0) = 0. Let £ € I;; and k > 1. Letting
zr =z and x; = 0 in (4.1) for all [ # k, we get that f(z) = f(—z) for all
z € X. So the function f is even. Therefore
l)f($1,$2,$3,$4)
=2f(zi +xj —xp — ) + 2f(mi — 2 + 28 — T1)
+2f(zi— oy —wp + @) = 2f (2 —2) =2 Y flwy —2)

1<p<q<4
(p,@)#(1.9)

for all z1, 22, 23,74 € X, where k,l € I;; and k # [. So by letting z; = z; =0
n (4.1), we get

flze +x1) + flze — @) = 2f () + 2f (1)

for all z,2z; € X. Hence the function f is quadratic. a
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Corollary 4.2. Let 0,r be positive real numbers. Suppose that a function
f: X =Y satisfies the inequality

IDf(z1, T2, 23, 74) ||y < Ol|z:ll’

Jor all z1,2,33,24 € X and for some 1 <1 < 4. Then the function f: X =Y
s quadratic.

The proof of the following theorem is similar to the proof of Theorem 4.1.

Theorem 4.3. Let 0 and {r;}ic, be positive real numbers, where J is a non-
empty subset of {1,2,3,4}. Suppose that a function f : X — Y satisfies the
mequality

“D.f{xlsx%x& xé)uy <4 H Qﬂ?zllgé
ied
for all z1,x2,23,24 € X. Then the function f: X — Y is quadratic.
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