ON w-CHEBYSHEV SUBSPACES IN BANACH SPACES

MARAM SHAMS, HAMID MAZAHERI, AND SAYED MANSOUR VAEZPOUR

ABSTRACT. The purpose of this paper is to introduce and discuss the concept of w-Chebyshev subspaces in Banach spaces. The concept of quasi Chebyshev in Banach space is defined. We show that w-Chebyshevity of subspaces are a new class in approximation theory. In this paper, also we consider orthogonality in normed spaces.

1. Introduction

Let X be a real Banach space and let $Y \subset X$ be a closed subspace. Consider the set-valued mapping $P_Y: X \to 2^Y$ defined by $P_Y(x) = \{y \in Y: \|x - y\| = d(x,Y)\}$. We say that Y is proximinal in X if $P_Y(x) \neq \emptyset$ for every $x \in X$. If Y is proximinal, $P_Y(x)$ is called the best approximation set of x in Y. We say that Y is Chebyshev if $P_Y(x)$ is singleton for every $x \in X$ and Y is said to be quasi Chebyshev if $P_Y(x)$ is nonempty and compact for every $x \in X$ (see [1], [5-6]).

For a Banach space X we denote its unit sphere by S_X . For $x \in X$ with d(x,Y)=1, let $Q_Y(x)=x-P_Y(x)$. It is easy to see that $Q_Y(x)=\{z\in S_X: f(z)=f(x)\ \forall f\in Y^\perp\}$.

For $f \in X^*$ we define the pre-duality map of X by

$$J_X(f) = \{z \in S_X : f(z) = ||f||\}.$$

Suppose $Y \subset X$ is a proximinal hyperplane and suppose $f \in Y^{\perp}$, ||f|| = 1 and $Y = \ker f$. Now let $x \in S_X$, d(x, Y) = 1. Then we have |f(x)| = 1. Hence

$$Q_Y(x) = \begin{cases} J_X(f) & \text{if} \quad f(x) = 1, \\ J_X(-f) & \text{if} \quad f(x) = -1. \end{cases}$$

If we put.

$$\hat{Y} = \{x \in X : ||x|| = d(x, Y)\} = \{x \in X : 0 \in P_Y(x)\},\$$

then \hat{Y} is a closed set in X. We easily can prove that if d(x,Y)=1, then

$$P_Y(x) = (x + (\hat{Y} \cap S_X)) \cap Y.$$

Received February 18, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 41A65, 46B50, 46B20, 41A50.

Key words and phrases. w-Chebyshev subspaces, orthogonality, proximinal subspaces, Chebyshev subspaces.

2. w-Chebyshev subspaces

In this section we define w-Chebyshev subspaces in the normed spaces and characterize them.

Definition. Let X be a normed space, Y be a subspace of X. We say that W is a w-Chebyshev subspace, if for every $x \in X$, $x + (\hat{Y} \cap S_X)$ is a nonempty and weakly compact set in X.

Note that if Y is w-Chebyshev, then $P_Y(x)$ is weakly compact for $x \in X \setminus Y$.

Theorem 2.1. Let X be a normed space, Y be a subspace of X with codim Y = 1. Then the following statement are equivalent:

- i) Y is w-Chebyshev.
- ii) for every $f \in Y^{\perp}$, $J_X(f)$ is weakly compact.
- iii) for every $x \in X$, $P_Y(x)$ is weakly compact.

Proof. i) \Rightarrow ii) suppose Y is w-Chebyshev, $f \in Y^{\perp}$ and $\{z_n\} \subset J_X(f)$. Put $h := f/\|f\|$ then we have $\|h\| = 1$, $h(z_n) = \|z_n\|$, hence $z_n \in \hat{Y} \cap S_X$. Thus the proof is complete.

- ii) \Rightarrow iii) Suppose $x \in X$ and d(x,Y) = 1. Let $\{z_n\}$ be a sequence in $P_Y(x)$ therefore $x z_n \in Q_Y(x)$. Since for every $f \in Y^{\perp}$, $J_X(f)$ is weakly compact and in either case $J_Y(f)$ is weakly compact if $Q_Y(x)$ is, hence $P_Y(x)$ is weakly compact. Now suppose $d(x,Y) = \alpha$, then $d(\frac{1}{\alpha}x,Y) = 1$. By the above prove we have $P_Y(\frac{1}{\alpha}x)$ is weakly compact. Since $P_Y(\frac{1}{\alpha}x) = \frac{1}{\alpha}P_Y(x)$, the proof is complete.
- iii) \Rightarrow i) Since codim Y=1, therefore there exists $f \in X^*$ and $Y=\ker f$. Let $x \in X$ and $\{z_n\}$ be a sequence in $x+(\hat{Y} \cap S_X)$. Therefore $d(z_n-x,Y)=\|z_n-x\|=1$. On the other hand, $d(z_n-x,Y)=|f(z_n-x)|/\|f\|$. Hence $z_n-x \in J_Y(f) \cup J_Y(-f)$ for each n. Thus by the above discussion, $J_X(f)$ is weakly compact. Hence $\{z_n-x\}$ has a weakly convergent subsequence. \square

We know that every quasi Chebyshev subspace with codimension one of X is a w-Chebyshev subspace of X. The following example shows that there exists a w-Chebyshev subspace of a Banach space X which is not quasi Chebyshev.

Example 2.2. Let $W = l^2$ and let $W_0 = \langle (-1)^n \rangle$ be the subspace of l^{∞} . Put $X = W \oplus W_0$ and define a norm on X by,

$$||x + y|| = \max\{||x||_2, ||y||_{\infty}\}$$

for all $x \in W$ and all $y \in W_0$.

It is clear that $\|\cdot\|$ is a norm on X, X is a Banach space with respect to this norm and codim W = 1. If $y = (-1)^n \in W_0$, its not difficult to show that

$$P_W(y) = \{x \in W : ||x||_2 \le 1\} = B_W.$$

Hence $P_W(y)$ is not compact because W is reflexive. Therefore, W is not quasi Chebyshev in X, but by Theorem 2.1, W is w-Chebyshev.

Definition. A subspace Y of a normed space X is called w-boundedly compact if for every bounded sequence $\{y_n\}$ in Y, there exists $x_0 \in Y$ and a subsequence $\{y_{n_k}\}$ such that $y_{n_k} \stackrel{w}{\to} x_0$.

Note that every bounded subset of a reflexive normed space is w-boundedly compact and therefore is weakly compact.

Theorem 2.3. Let \hat{Y} be w-boundedly compact. Then $P_Y(x)$ is weakly compact.

Proof. Suppose d(x,Y)=1 and $\{y_n\}$ is a sequence in $Q_Y(x)$. Therefore $\|y_n\|=1$ and for every $f\in Y^\perp$, $f(y_n)=f(x)$. Since $Q_Y(x)\subset \hat{Y}\cap S_X$ and \hat{Y} is wboundedly compact, there exists the subsequence $\{y_{n_k}\}$ such that $y_{n_k}\overset{w}{\to}y_0$. Hence for all $f\in Y^\perp$, $f(y_0)=\lim f(y_{n_k})=f(x)$. By Hahn Banach theorem, there exists $f_1\in X^*$ such that $\|f_1\|=1$, $f_1\in Y^\perp$ and $f_1(x)=1$. Since for every $f\in X^*$, $\|f\|=1$, $|f(y_0)|\leq 1$ and $f_1(y_0)=1$ therefore $\|y_0\|=1$. Thus $Q_Y(x)$ is weakly compact and $P_Y(x)$ is weakly compact. Now for all $x\in X\setminus Y$ let $d(x,Y)=\alpha\neq 0$ then $d(\frac{1}{\alpha}x,Y)=1$. Therefore $P_Y(\frac{1}{\alpha}x)$ is weakly compact. Since $P_Y(\frac{1}{\alpha}x)=\frac{1}{\alpha}P_Y(x)$, the proof is complete.

Theorem 2.4. \hat{Y} is w-boundedly compact if and only if Y is w-Chebyshev.

Proof. Suppose Y is w-Chebyshev subspace and $\{y_n\} \subset \hat{Y}$ is a bounded sequence. Then there exists α such that $\|y_n\| \leq \alpha$. Put $x_n := \frac{y_n}{\|y_n\|}$, therefore $x_n \in \hat{Y} \cap S_X$. Since Y is w-Chebyshev, there exists $\{x_{n_k}\} \subset \{x_n\}$ such that $x_{n_k} \xrightarrow{w} x_0$. Also $\{\|y_{n_k}\|\}$ is a bounded sequence in C then $\|y_{n'}\| \to \beta$ thus $y_{n'} \xrightarrow{w} \beta x_0$. Also $\{\|y_{n_k}\|\}$ is a bounded sequence in the complex field C then $\|y_{n_K}\| \longrightarrow \beta$ thus $y_{n'} \xrightarrow{w} \beta x$. Then \hat{Y} is w-boundedly compact.

Conversely, suppose \hat{Y} is w-boundedly compact, and $\{x_n\} \subset x + (\hat{W} \cap S_X)$. Then $d(x_n - x, W) = ||x_n - x|| = 1$ therefore $\{x_n - x\}$ is a bounded sequence in \hat{Y} and has a w-convergence sequence $\{x_{n_k} - x\}$, $x_{n_k} - x \xrightarrow{w} x_0$.

Theorem 2.5. Let M be a proximinal subspace of X and W be a subspace of X containing M. If W is a w-Chebyshev, then W/M is w-Chebyshev.

Proof. We know that for every $x \in X$, d(x, W) = d(x + M, W/M). Suppose $\{y_n + M\} \subseteq \hat{y} + ((\hat{W/M}) \cap S_{X/M})$. Then we have

$$d(y_n - y, W) = d((y_n - y) + M, W/M) = ||(y_n - y) + M|| = 1.$$

Since M is proximinal,

$$d(y_n - y, W) = ||(y_n - y) + m_n||.$$

Then $m_n \in P_W(y_n - y)$, therefore $y_n - y - m_n \in \hat{W} \cap S_X$. Since W is w-Chebyshev there exists the subsequence $\{y_{n_k} - m_{n_k}\}$ such that $y_{n_k} - m_{n_k} \stackrel{w}{\to} x_0$. Since the canonical map $\pi: X \to X/M$ is continuous, therefore $\pi(y_{n_k} - m_{n_k}) \stackrel{w}{\to} \pi(x_0)$. Hence for all $f \in (X/M)^*$,

$$f(y_{n_k} + M) = f \circ \pi(y_{n_k}) = f \circ \pi(y_{n_k} - m_{n_k}) \to f \circ \pi(x_0) = f(x_0 + M).$$

Thus W/M is w-chebyshev.

Theorem 2.6. Let M be a proximinal w-boundedly compact subspace of a normed space X and W be a subspace of X containing M. If $(\hat{W/M}) \cap S_{X/M}$ is compact, then W is a w-Chebyshev subspace of X.

Proof. Since for all $x \in X$ we have d(x, W) = d(x + M, W/M). Therefore $\pi(\hat{W} \cap S_X) \subset (\hat{W/M}) \cap S(X/M)$. Now suppose $\{x_n\}$ be a sequence in $x + (\hat{W} \cap S_X)$ then sequence $\{\pi(x_n - x)\}$ is in $(\hat{W/M}) \cap S_{X/M}$ where $\pi(x_n - x) = (x_n - x) + M$. Since $(\hat{W/M}) \cap S_{X/M}$ is compact, there exists $x_0 \in X$ and a subsequence such that $x_{n_k} + M \to x_0 + M$. Since M is proximinal, there exists a sequence $\{m_{n_k}\}$ in M such that $\|x_0 - x_{n_k} + x - m_{n_k}\| = d(x_0 - x_{n_k} + x, M)$. Therefore

$$\lim \|x_0 - x_{n_k} + x - m_{n_k}\| = \lim \|(x_{n_k} - x) + M - (x_0 + M)\| = 0.$$

Also M is w-boundedly compact, then there exists a m_0 such that $m_{n_k} \stackrel{w}{\to} m_0$. Put $y_0 = x_0 - m_0$, we have

$$|x^{*}(y_{0}) - x^{*}(x_{n_{k}} - x)| = |x^{*}(x_{0} - m_{0} - x_{n_{k}} + m_{n_{k}} - m_{n_{k}} - x)|$$

$$\leq |x^{*}(x_{0} - x_{n_{k}} - x - m_{n_{k}})| + |x^{*}(m_{n_{k}} - m_{0})|$$

$$\leq ||x^{*}|| ||x_{0} - x_{n_{k}} - x - m_{n_{k}}||.$$

Then $x_{n_k} - x \xrightarrow{w} y_0$. Since $\hat{W} \cap S_X$ is closed so $y_0 \in \hat{W} \cap S_X$ and the proof is complete.

Definition. let X be a Banach space. A weak*-closed subspace $M \subset X^*$ is said to have property (W^*) if for every $x \in X \setminus M_{\perp}$,

$$D_x = \{ y \in X : f(y) = f(x) \ \forall f \in M, \ \|y\| = \|x\|_M \}$$

is nonempty and weakly compact, where $\|x\|_M = \sup\{|f(x)| : \|f\| \le 1, f \in M\}$.

Theorem 2.7. Let Y be w-Chebyshev subspace of X. Then Y^{\perp} has the property W^* .

Proof. let ||x|| = 1 and $\{y_n\}$ is a sequence in D_x . Therefore for all $f \in Y^{\perp}$, $f(y_n) = f(x)$ and $||y_n|| = ||x||_M$. Then $\{y_n\} \subset Q_Y(x) \subset \hat{Y} \cap S_X$, hence there exists the subsequence $\{y_{n_k}\}$ such that $y_{n_k} \xrightarrow{w} y_0$.

3. Orthogonality in normed linear spaces

Suppose X is a normed linear space and $x, y \in X$, x is said to be orthogonal to y and is denoted by $x \perp y$ if and only if $||x|| \leq ||x + \alpha y||$ for all scalar α . If M_1 and M_2 are subsets of X, it is defined $M_1 \perp M_2$ if and only if for all $g_1 \in M_1, g_2 \in M_2, g_1 \perp g_2$. (see [3-5]). It is defined,

$$\breve{M} = \{ x \in X : \ M \bot x \},\$$

the cometric set of M.

At first we state lemmas which is needed in the proof of the main results.

Lemma 3.1 (Papini and Singer [6]). Let G be a linear subspace of a normed linear space X and $x \in X \setminus G$. The following statements are equivalent:

- (i) For every $G \in g$, $||g g_0|| \le ||x g||$.
- (ii) For each $g \in G$ there exists a functional $f^g \in X^*$ such that $||f^g|| = 1$, $f^g(x) = f^g(g_0)$ and $f^g(g) = ||g||$.

Theorem 3.2. Let X be a Banach space, M be a linear subspace of X and $F \subseteq X$. If \check{M} is a convex subset of X, then the following statements are equivalent:

- (i) $M \perp F$.
- (ii) For all $g \in M$, there exists $f \in X^*$ such that ||f|| = 1 and $f|_F = 0$.

Proof. i) \Rightarrow ii). Since $M \perp \check{M}$, then for each $g \in M$ there exists $f \in X^*$ such that ||f|| = 1, $f|_{\check{M}} = 0$ and f(g) = ||g||. Now $F \subseteq \check{M}$, it follows that $f|_F = 0$.

ii) \Rightarrow i). Suppose for all $g \in M$ there exists $f \in X^*$ such that ||f|| = 1, $f|_F = 0$ and f(g) = ||g||. For all $g \in M$ and all $x \in F$, we have

$$||g|| = f(g)$$

$$= f(g + \alpha x)$$

$$\leq ||f|| ||g + \alpha x||$$

$$= ||g + \alpha x||$$

for all scalar α . Therefore $M \perp F$.

Corollary 3.3. Let X be a Banach space, M be a linear subspace of X and $x \in X$. If \check{M} is a convex subset of X, then the following statements are equivalent:

- (a) $M \perp x$.
- (b) For all $g \in M$, $||g||_{\Gamma_x} = ||g||$, where

$$\Gamma_x = \{ f \in X^* : f(x) = 0 \}, \text{ and } ||g||_{\Gamma_x} = \sup_{f \in \Gamma_x} |f(g)|.$$

References

- D. Narayana and T. S. S. R. K. Rao, Some remarks on quasi-Chebyshev subspaces, J. Math. Anal. Appl. 321 (2006), no. 1, 193-197.
- [2] C. Franchetti and M. Furi, Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures. Appl. 17 (1972), 1045–1048.
- [3] H. Mazaheri and F. M. Maalek Ghaini, Quasi-orthogonality of the best approximant sets, Nonlinear Anal. 65 (2006), no. 3, 534-537.
- [4] H. Mazaheri and S. M. Vaezpour, Orthogonality and ε-orthogonality in Banach spaces, Aust. J. Math. ASnal. Appl. 2 (2005) no. 1, Art. 10, 1-5.
- [5] P. L. Papini and I. Singer, Best coapproximation in normed linear spaces, Monatsh. Math. 88 (1979), no. 1, 27-44.
- [6] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York-Berlin, 1970.

MARAM SHAMS

DEPARTMENT OF MATHEMATICS

YAZD UNIVERSITY

YAZD, IRAN

E-mail address: shams@spu.yazduni.ac.ir

HAMID MAZAHERI

DEPARTMENT OF MATHEMATICS

YAZD UNIVERSITY

YAZD, IRAN

E-mail address: hmazaheri@yazduni.ac.ir

SAYED MANSOUR VAEZPOUR

DEPARTMENT OF MATHEMATICS

YAZD UNIVERSITY

YAZD, IRAN

 $E ext{-}mail\ address: waez@yazduni.ac.ir}$