Proteomic Analysis of Recombinant Saccharomyces cerevisiae upon Iron Deficiency Induced via Human H-Ferritin Production

  • Seo, Hyang-Yim (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Chang, Yu-Jung (Center for University-Wide Research Facilities, Chonbuk National University) ;
  • Chung, Yun-Jo (Center for University-Wide Research Facilities, Chonbuk National University) ;
  • Kim, Kyung-Suk (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University)
  • Published : 2008.08.31

Abstract

In our previous study, the expression of active H-ferritins in Saccharomyces cerevisiae was found to reduce cell growth and reactive oxygen species (ROS) generation upon exposure to oxidative stress; such expression enhanced that of high-affinity iron transport genes (FET3 and FTR1). The results suggested that the recombinant cells expressing H-ferritins induced cytosolic iron depletion. The present study analyzes metabolic changes under these circumstances via proteomic methods. The YGH2 yeast strain expressing A-ferritin, the YGH2-KG (E62K and H65G) mutant strain, and the YGT control strain were used. Comparative proteomic analysis showed that the synthesis of 34 proteins was at least stimulated in YGH2, whereas the other 37 proteins were repressed. Among these, the 31 major protein spots were analyzed via nano-LC/MS/MS. The increased proteins included major heat-shock proteins and proteins related to endoplasmic reticulum-associated degradation (ERAD). On the other hand, the proteins involved with folate metabolism, purine and methionine biosynthesis, and translation were reduced. In addition, we analyzed the insoluble protein fractions and identified the fragments of Idh1p and Pgk1p, as well as several ribosomal assembly-related proteins. This suggests that intracellular iron depletion induces imperfect translation of proteins. Although the proteins identified above result from changes in iron metabolism (i.e., iron deficiency), definitive evidence for iron-related proteins remains insufficient. Nevertheless, this study is the first to present a molecular model for iron deficiency, and the results may provide valuable information on the regulatory network of iron metabolism.

Keywords

References

  1. Aisen, P., C. Enns, and M. Wessling-Resnick. 2001. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 33: 940-959 https://doi.org/10.1016/S1357-2725(01)00063-2
  2. Anderson, G. A., A. Dancis, D. G. Roman, and R. D. Klausner. 1994. Ferric iron reduction and iron uptake in eukaryotes: Studies with the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, pp. 81-89. In C. Hershko, A. M. Konijn, and P. Aisen (eds.), Progress in Iron Research. Plenum Press, New York
  3. Babcock, M., D. deSilva, R. Oaks, S. Davis-Kaplan, S. Jiralerspong, L. Montermini, M. Pandolfo, and J. Kaplan. 1997. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homology of frataxin. Science 276: 1709-1712 https://doi.org/10.1126/science.276.5319.1709
  4. Bauminger, E. R., A. Treffry, A. J. Hudson, D. Hechel, N. W. Hodson, S. C. Andrews, et al. 1994. Iron incorporation into ferritins: Evidence for the transfer of monomeric Fe (III) between ferritin molecules and for the formation of an unusual mineral in the ferritin of Escherichia coli. Biochem. J. 302:813-820 https://doi.org/10.1042/bj3020813
  5. Briones, C. and J. P. Ballesta. 2000. Conformational changes induced in the Saccharomyces cerevisiae GTPase-associated rRNA by ribosomal stalk components and a translocation inhibitor. Nucleic Acids Res. 28: 4497-4505 https://doi.org/10.1093/nar/28.22.4497
  6. Clark, M. W., M. L. R. Yip, J. Compbell, and J. Abelson. 1990. SSB1 of the yeast Sacchromyces cerevisiae is a nuclear-specific, silver binding protein that is associated with the snR10 and snR11 small nuclear RNA. J. Cell Biol. 111: 1741-1751 https://doi.org/10.1083/jcb.111.5.1741
  7. Decatur, W. A. and M. J. Fournier. 2002. rRNA modifications and ribosome function. Trends Biochem. Sci. 27: 344-351 https://doi.org/10.1016/S0968-0004(02)02109-6
  8. Denis, V. and B. Dignan-Fornier. 1998. Synthesis of glutamine, glycine and 10-formyl tetrahydrofolate is coregulated with purine biosynthesis in Saccharomyces cerevisiae. Mol. Gen. Genet. 259: 246-255 https://doi.org/10.1007/s004380050810
  9. Ellgaard, L. and A. Helenius. 2003. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell. Biol. 4: 181-191 https://doi.org/10.1038/nrm1052
  10. Freitas, J. D., H. Wintz, J. H. Kim, H. Poynton, T. Fox, and C. Vulpe. 2003. Yeast, a model organism for iron and copper metabolism studies. Biometals 16: 185-197 https://doi.org/10.1023/A:1020771000746
  11. Gorg, A., C. Obermaier, G. Boguth, A. Harder, B. Scheibe, R. Wildgruber, and W. Weiss. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradient. Electrophoresis 21: 1037-1053 https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V
  12. Harrison, P. M. and P. Arosio. 1996. The ferritins; molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275: 161-203 https://doi.org/10.1016/0005-2728(96)00022-9
  13. Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168
  14. Kim, K.-S., Y.-J. Chang, Y.-J. Chung, C.-U. Park, and H.-Y. Seo. 2007. Enhanced expression of high-affinity iron transporters via H-ferritin production in yeast. J. Biochem. Mol. Biol. 40:82-87 https://doi.org/10.5483/BMBRep.2007.40.1.082
  15. Molly, M. P., B. R. Herbert, B. J. Walsh, M. I. Tyler, M. Traini, J. C. Sanchez, D. F. Hochstrasser, K. L. Williams, and A. A. Gooley. 1998. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19: 837-844 https://doi.org/10.1002/elps.1150190539
  16. Myers, P. L., R. C. Skvirsky, M. L. Greenberg, and H. Greer. 1986. Negative regulatory gene for general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 6: 3150-3155 https://doi.org/10.1128/MCB.6.9.3150
  17. Oexle, H., E. Gnaiger, and G. Weiss. 1999. Iron-dependent changes in cellular energy metabolism: Influence on citric acid cycle and oxidative phosphorylation. Biochim. Biophys. Acta 1413: 99-107 https://doi.org/10.1016/S0005-2728(99)00088-2
  18. Okamura, K., Y. Kimata, H. Higashio, A. Tsuru, and K. Kohno. 2000. Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem. Biophys. Res. Commun. 279: 445-450 https://doi.org/10.1006/bbrc.2000.3987
  19. Oppenheim, E. W., I. M. Nasrallh, M. G. Mastri, and P. J. Stover. 2000. Mimosine is a cell-specific antagonist of folate metabolism. J. Biol. Chem. 275: 19268-19274 https://doi.org/10.1074/jbc.M001610200
  20. Planta, R. J. and W. H. Mager. 1998. The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 14: 471-477 https://doi.org/10.1002/(SICI)1097-0061(19980330)14:5<471::AID-YEA241>3.0.CO;2-U
  21. Portnoy, M. E., X. F. Liu, and V. C. Culotta. 2000. Saccharomyces cerevisiae expresses three functionally distinct homologues of the Nramp family of metal transporters. Mol. Cell. Biol. 20: 7893-7902 https://doi.org/10.1128/MCB.20.21.7893-7902.2000
  22. Puig, S., E. Askeland, and D. J. Thiele. 2005. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120: 99-110 https://doi.org/10.1016/j.cell.2004.11.032
  23. Radisky, D. C. and J. Kaplan. 1999. Regulation of transition metal transport across the yeast plasma membrane. J. Biol. Chem. 274: 4481-4484 https://doi.org/10.1074/jbc.274.8.4481
  24. Rutherford, J. C., S. Jaron, and D. R. Winge. 2003. Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements. J. Biol. Chem. 278: 27636-27643 https://doi.org/10.1074/jbc.M300076200
  25. Sato, M., K. Sato, and A. Nakano. 2004. Endoplasmic reticulum quality control of unassembled iron transporter depends on Rer1p-mediated retrieval from the Golgi. Mol. Biol. Cell 15: 1417-1424 https://doi.org/10.1091/mbc.E03-10-0765
  26. Seo, H.-Y., Y.-J. Chung, S.-J. Kim, C.-U. Park, and K.-S. Kim. 2003. Enhanced expression and functional characterization of the human ferritin H- and L-chain genes in Saccharomyces cerevisiae. Appl. Microbiol. Biotech. 63: 57-63 https://doi.org/10.1007/s00253-003-1350-3
  27. Shakoury-Elizeh, M., J. Tiedeman, J. Rashford, T. Ferea, J. Demeter, E. Garcia, et al. 2004. Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. Mol. Biol. Cell 15: 1233-1243 https://doi.org/10.1091/mbc.E03-09-0642
  28. Tosco, A., R. A. Siciliano, G. Cacace, M. F. Mazzeo, R. Capone, A. Malorni, A. Leone, and L. Marzullo. 2005. Dietary effects of copper and iron deficiency on rat intestine: A differential display proteome analysis. J. Proteome Res. 4:1781-1788 https://doi.org/10.1021/pr0501012
  29. Yamaguchi-Iwai, Y., A. Dancis, and R. D. Klausner. 1995. AFT1, a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J. 14: 1231-1239