Heterologous Expression and Characterization of Glycogen Branching Enzyme from Synechocystis sp. PCC6803

  • Lee, Byung-Hoo (Department of Food Science and Technology and Carbohydrate Bioproduct Research Center, Sejong University) ;
  • Yoo, Young-Hee (Department of Food Science and Technology and Carbohydrate Bioproduct Research Center, Sejong University) ;
  • Ryu, Je-Hoon (Department of Food Science and Technology and Carbohydrate Bioproduct Research Center, Sejong University) ;
  • Kim, Tae-Jip (Department of Food Science & Technology, Chungbuk National University) ;
  • Yoo, Sang-Ho (Department of Food Science and Technology and Carbohydrate Bioproduct Research Center, Sejong University)
  • Published : 2008.08.31

Abstract

A gene (sll0158) putatively encoding a glycogen branching enzyme (GBE, E.C. 2.4.1.18) was cloned from Synechocystis sp. PCC6803, and the recombinant protein expressed and characterized. The PCR-amplified putative GBE gene was ligated into a pET-21a plasmid vector harboring a T7 promoter, and the recombinant DNA transformed into a host cell, E. coli BL21(DE3). The IPTG-induced enzymes were then extracted and purified using Ni-NTA affinity chromatography. The putative GBE gene was found to be composed of 2,310 nucleotides and encoded 770 amino acids, corresponding to approx. 90.7 kDa, as confirmed by SDS-PAGE and MALDI-TOF-MS analyses. The optimal conditions for GBE activity were investigated by measuring the absorbance change in iodine affinity, and shown to be pH 8.0 and $30^{\circ}C$ in a 50 mM glycine-NaOH buffer. The action pattern of the GBE on amylose, an $\alpha$-(1,4)-linked linear glucan, was analyzed using high-performance anion-exchange chromatography (HPAEC) after isoamylolysis. As a result, the GBE displayed $\alpha$-glucosyl transferring activity by cleaving the $\alpha$-(1,4)-linkages and transferring the cleaved maltoglycosyl moiety to form new $\alpha$-(1,6)-branch linkages. A time-course study of the GBE reaction was carried out with biosynthetic amylose (BSAM; $M_p{\cong}$8,000), and the changes in the branch-chain length distribution were evaluated. When increasing the reaction time up to 48 h, the weight- and number-average DP ($DP_w$ and $DP_n$) decreased from 19.6 to 8.7 and from 17.6 to 7.8, respectively. The molecular size ($M_p$, peak $M_w{\cong}2.45-2.75{\times}10^5$) of the GBE-reacted product from BSAM reached the size of amylose (AM) in botanical starch, yet the product was highly soluble and stable in water, unlike AM molecules. Thus, GBE-generated products can provide new food and non-food applications, owing to their unique physical properties.

Keywords

References

  1. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.). 1999. Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology. Wiley, New York
  2. Boeckmann, B., A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, et al. 2003. The SWISS-PROT protein knowledge base and its supplement TrEMBL in 2003. Nucl. Acids Res. 31: 365-370 https://doi.org/10.1093/nar/gkg095
  3. Borovsky, D., E. E. Smith, and W. J. Whelan. 1976. On the mechanism of amylose branching by potato Q-enzyme. Eur. J. Biochem. 62: 307-312 https://doi.org/10.1111/j.1432-1033.1976.tb10162.x
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Calder, P. C. and R. Geddes. 1985. Glycogen of high molecular weight from mammalian muscle. Carbohydr. Res. 135: 249-256 https://doi.org/10.1016/S0008-6215(00)90776-6
  6. Chao, L. and C. C. Bowen. 1971. Purification and properties of glycogen isolated from a blue-green alga, Nostoc muscorum. J. Bacteriol. 105: 331-338
  7. Guan, H. P. and J. Preiss. 1993. Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol. 102: 1269-1273 https://doi.org/10.1104/pp.102.4.1269
  8. Guan, H. P., T. Baba, and J. Preiss. 1994. Expression of branching enzyme I of maize endosperm in Escherichia coli. Plant Physiol. 104: 1449-1453 https://doi.org/10.1104/pp.104.4.1449
  9. Guan, H. P., T. Kuriki, M. Sivak, and J. Preiss. 1995. Maize branching enzyme catalyzes synthesis of glycogen-like polysaccharide in glgB-deficient Escherichia coli. Proc. Natl. Acad. Sci. USA 92: 964-967
  10. Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, et al. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3: 109-136 https://doi.org/10.1093/dnares/3.3.109
  11. Keller, F. and D. M. Pharr. 1996. Metabolism of carbohydrates in sinks and sources: Galactosyl-sucrose oligosaccharides, pp.157-183. In E. Zamski and A. A. Schaffer (eds.), Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships. Marcel Dekker, New York
  12. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  13. Manners, D. J. 1991. Recent developments in our understanding of glycogen structure. Carbohydr. Polym. 16: 37-82 https://doi.org/10.1016/0144-8617(91)90071-J
  14. Marshall, J. J. and W. J. Whelan. 1974. Multiple branching in glycogen and amylopectin. Arch. Biochem. Biophys. 161: 234-238 https://doi.org/10.1016/0003-9861(74)90256-2
  15. Matsui, M., M. Kakuta, and A. Misaki. 1993. Comparison of the unit chain distributions of glycogens from different biological sources, revealed by anion exchange chromatography. Biosci. Biotechnol. Biochem. 57: 623-627 https://doi.org/10.1271/bbb.57.623
  16. Matsui, M., M. Kakuta, and A. Misaki. 1996. Fine structural features of oyster glycogen: Mode of multiple branching. Carbohydr. Polym. 31: 227-235 https://doi.org/10.1016/S0144-8617(96)00116-6
  17. McFadden, G. I. 2001. Chloroplast origin and integration. Plant Physiol. 125: 50-53 https://doi.org/10.1104/pp.125.1.50
  18. Murakami, T., T. Kanai, H. Takata, T. Kuriki, and T. Imanaka. 2006. A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 188: 5915-5924 https://doi.org/10.1128/JB.00390-06
  19. Park, J. H., K. H. Park, and J. Jane. 2007. Physicochemical properties of enzymatically modified maize starch using 4-$\alpha$-glucanotransferase. Food Sci. Biotechnol. 16: 902-909
  20. Potocki, V. G., J. L. Putaux, D. Dupeyre, C. Albenne, M. R. Simeon, P. Monsan, and A. Buleon. 2005. Amylose synthesized in vitro by amylosucrase: Morphology, structure, and properties. Biomacromolecules 6: 1000-1011 https://doi.org/10.1021/bm049326g
  21. Rani, M. R. S., K. Shibanuma, and S. Hizukuri. 1992. The fine structure of oyster glycogen. Carbohydr. Res. 227: 183-194 https://doi.org/10.1016/0008-6215(92)85070-G
  22. Robyt, J. F. 1998. Essentials of Carbohydrate Chemistry, pp. 157-160. Springer, New York
  23. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York
  24. Takata, H., T. Takaha, H. Nakamura, K. Fujii, S. Okada, M. Takagi, and T. Imanaka. 1997. Production and some properties of a dextrin with a narrow size distribution by the cyclization reaction of branching enzyme. J. Ferment. Bioeng. 84: 119-123 https://doi.org/10.1016/S0922-338X(97)82539-1
  25. Takata, H., T. Takaha, S. Okada, M. Takagi, and T. Imanaka. 1996. Cyclization reaction catalyzed by branching enzyme. J. Bacteriol. 178: 1600-1606 https://doi.org/10.1128/jb.178.6.1600-1606.1996
  26. Takata, H., T. Takaha, S. Okada, S. Hizukuri, M. Takagi, and T. Imanaka. 1996. Structure of the cyclic glucan produced from amylopectin by Bacillus stearothermophilus branching enzyme. Carbohydr. Res. 295: 91-101 https://doi.org/10.1016/S0008-6215(96)90126-3
  27. Takata, H., T. Takaha, T. Kuriki, S. Okada, M. Takagi, and T. Imanaka. 1994. Properties and active center of the thermostable branching enzyme from Bacillus stearothermophilus. Appl. Environ. Microbiol. 60: 3096-3104
  28. Weber, M. and G. Wober. 1975. The fine structure of the branched $\alpha$-glucan from the blue-green alga Anacystis nidulans: Comparison with other bacterial glycogens and phytoglycogen. Carbohydr. Res. 39: 295-302 https://doi.org/10.1016/S0008-6215(00)86139-X
  29. Wong, K. S. and J. Jane. 1997. Quantitative analysis of debranched amylopectin by HPAEC-PAD with a post-column enzyme reactor. J. Liq. Chromatogr. Relat. Technol. 20: 297-310 https://doi.org/10.1080/10826079708010654
  30. Yoo, S. H., C. Keppel, M. Spalding, and J. Jane. 2007. Effects of growth condition on the structure of glycogen produced in cyanobacterium Synechocystis sp. PCC6803. Int. J. Biol. Macromol. 40: 498-504 https://doi.org/10.1016/j.ijbiomac.2006.11.009
  31. Yoo, S. H., M. H. Spalding, and J. Jane. 2002. Characterization of cyanobacterial glycogen isolated from the wild type and from a mutant lacking of branching enzyme. Carbohydr. Res. 337:2195-2203 https://doi.org/10.1016/S0008-6215(02)00228-8