DOI QR코드

DOI QR Code

Simulation of 4H-SiC MESFET for High Power and High Frequency Response

  • Published : 2008.09.30

Abstract

In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

Keywords

References

  1. M. Bhatnagar and B.J. Baliga, "Comparison of 6HSiC, 3C-SiC, and Si for power devices", IEEE Trans. Electron Devices, Vol.40, p.645, 1993 https://doi.org/10.1109/16.199372
  2. R.J. Trew, J. Yan, and R.M. Mock, "The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications", Proc. IEEE, Vol.79, p.598, 1991
  3. W.J. Scaffer, G.H. Negley, et.al, MRS Symposia Proceedings (MRS Pittsburg, PA, 1994), Vols.339 and 595
  4. S. Sriram, R.R. Siergiej, R.C. Clark, et.al, "SiC for Microwave Power Transistors", Physica Status Solidi (A), Applied Research, Vol.162, p.441, 1997 https://doi.org/10.1002/1521-396X(199707)162:1<441::AID-PSSA441>3.0.CO;2-3
  5. K.Sehnai, R.S.Scott, and B.J. Baliga, "Optimum semiconductor for high-power electronics", IEEE transactions on Electron Devices, Vol.43(9), p.1811, 1989
  6. G.P. McMullin, L.D. Barrett, et.al., "Silicon Carbide Devices for Radiation Hard Applications", AIP Conference Proceedings, Vol.271, p.625, 1993
  7. R.Singh, James A. Copper, et. al., "SiC power Schottky and PiN diode", IEEE Trans. On Electron Devices, Vol.49, No.4, p.665, 2002 https://doi.org/10.1109/16.992877
  8. D.Alok, B.J. Baliga, and P.K. McLary, "A simple edge termination for silicon carbide devices with nearly ideal breakdown voltage", IEEE Electron Devices Letters, No.19, p.394, 1994
  9. R. Raghunathan, D. Alok, and B.J. Baliga, "High voltage 4H-SiCSchottky barrier diodes", IEEE Electron Device Lett., Vol.16, p.226, 1995 https://doi.org/10.1109/55.790716
  10. C.E. Weitzel, J.W Palmour, et. al., "Silicon carbide high-power devices", IEEE Trans. Electron Devices, Vol.43, p.1732, 1996 https://doi.org/10.1109/16.536819
  11. M. Bhatnagar, Peter K. McLarty, and B.J. Baliga, "Silicon-carbide high-voltage (400V) Schottky diodes", IEEE Electron Devices Letters, Vol.13, No.10, p.501, 1992 https://doi.org/10.1109/55.192814
  12. C.E. Weitzel, John. W. Palmour, et.al. "4H-SiC MESFET with 2.8 W/mm Power Density at 1.8GHz", IEEE Electron Devices Lett., Vol.15, No.10, p.406, 1994 https://doi.org/10.1109/55.320983
  13. K. P. Hilton, M. J. Uren, D. G. Hayes, P. J. Wilding, H. K. Johnson, J. J. Guest, and B. H. Smith, "High power SiC MESFET technology", IEEE EDMO Symposium on High Performance Electron Devices for Microwave and Optoelectronics Applications, p.71, 1999
  14. R. C. Clarke and J. W. Palmour, "SiC microwave power technologies", Proceedings of IEEE, Vol.90, Issue 6, p.987, 2002
  15. Alok, D. and Baliga, B.J., "High Voltage (450 V) 6H-SiC lateral MESFET structure", IEEE Trans. Electronic Letters, Vol.32, No.20, p.1929, 1996 https://doi.org/10.1049/el:19961287
  16. S.Sriram, R.C. Clareke, et.al., "Silicon carbide microwave power MESFETs" in Silicon Carbide Related Materials, Proc. of 5th Conference, Nov 1993, Institute Phys Conference Series No. 137, Eds. M.G. Spencer, et.al., p.491, 1994
  17. J. W. Palmour, C. E. Weitzel, K. J. Nordquist, and C. H. Carter Jr., "Silicon carbide microwave FET's," Silicon Carbide and Related Materials, M. G. Spencer, R. P. Devaty, J. A. Edmond, M. Asif Khan, R. Kaplan, and M. Rahman, Eds. Bristol, U.K.: Institute of Physics, 1994, No.137, pp.495-498
  18. S.N. Chattopadhyay and B.B. Pal, "Analytical Modeling of a Silicon MESFET in Post-Anneal Condition", IEEE Transactions on Electron Devices, Vol.36, No.1, p.81, 1989 https://doi.org/10.1109/16.21182
  19. Mokhov, Gornushkina, Didik and Kozlovskij, "Phosphorus Diffusion in Silicon Carbide", Soviet Solid State, Vol.34, p.1043, 1992
  20. G. W. Taylor, H. M. Darley, R. C. Frye, and P. K. Chatterjee, "A Device Model for an Ion-Implanted MESFET", IEEE Transaction Electron Devices Vol. ED-26, No.3, p.172, 1979
  21. M.B. Dutt, et. al., "An analytical model for pinch off voltage evaluation of ion implanted GaAs MESFETs", IEEE Trans. Electron Devices, Vol.36, p.765, 1989 https://doi.org/10.1109/16.22484
  22. T. Takada, K. Yakoyama, et. al., "A MESFET variable capacitance for GaAs integrated circuit simulation", IEEE Trans. MTT, Vol.MTT-30, No.5, p.719, 1982
  23. S. N. Chattopadhyay and B. B. Pal, "The effects of annealing on the switching characteristics of an ion implanted silicon MESFET", IEEE Trans. Electron Devices, Vol.36, No.5, p.920, 1988 https://doi.org/10.1109/16.299674
  24. M. Bhatnagar and B.J. Baliga, "Comparison of 6HSiC, 3C-SiC and Si for power devices", IEEE Trans. on Electron Devices, Vol.40, No.3, p.645, 1993 https://doi.org/10.1109/16.199372
  25. V. Khemka, T.P. Chow, and R.J. Gutmann, "Effect of reactive ion etch-induced damage on the performance of 4H-SiC Schottky barrier diodes", Journal of Electronic Materials, Vol.27, No.10, p.1128, 1998 https://doi.org/10.1007/s11664-998-0150-z
  26. B. Jayant Baliga, "Silicon Carbide Power Devices", 1st Edition, World Scientific Publishing, 2005
  27. S.M. Sze and Kwok K. Ng, "Physics of Semiconductor Devices", 3rd Edition, John Wiley & Sons, Inc., 2007
  28. C.E. Weitzel, et. al., "Silicon carbide high-power devices", IEEE Trans. on Electron Devices, Vol.43, No.10, p.1732, 1996 https://doi.org/10.1109/16.536819
  29. A. Itoh, T. Kimoto, and H. Matsunami, "Efficient power Schottky rectifiers of 4H-SiC", Proceedings of 1995 International Symposium on Power Semiconductor Devices & ICs, Yokohama, p.101 (5.3)

Cited by

  1. A Novel High-Breakdown-Voltage SOI MESFET by Modified Charge Distribution vol.59, pp.5, 2012, https://doi.org/10.1109/TED.2012.2186580
  2. Novel 4H-SiC MESFET with modified depletion region by dual well for high-current applications vol.15, pp.3, 2016, https://doi.org/10.1007/s10825-016-0874-6
  3. An impressive structure containing triple trenches for RF power performance (TT-SOI-MESFET) pp.1572-8137, 2018, https://doi.org/10.1007/s10825-017-1078-4
  4. High breakdown voltage and high driving current in a novel silicon-on-insulator MESFET with high- and low-resistance boxes in the drift region vol.133, pp.6, 2018, https://doi.org/10.1140/epjp/i2018-12047-5