INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING ~ Vol. 9, No. 4, pp. 3944

OCTOBER 2008 / 39

A Systematic Gain Tuning of PID Controller
Based on the Concept of Time Delay Control

Jeong Wan Lee'#

1 Division of iviechanical and echatronics Frginesrng, Kangwon National University, 192-1.Hyoja2-dong, Chunchon, Kangwon-do, South Korea, 200-701
= Corresponding Author / E-mail: jwlee@kangwon.ac.kr, TEL: +82-33-250-6377. FAX: +82-33-257-4140

KEYWORDS : PID controller, Gain tuning, Time delay control, MIMO gain tuning

In this paper, through the study of discrete implementation of time delay control (TDC) and PID control algorithm,
a new systematic gain selection method for PID controller is proposed. An important advantage of this method is
that it may be applied to real systems with very simple and systematic procedure. The proposed method is derived
Jor SISO systems and then extended to MIMO system. Through simulation for the second order non-linear plant and
experiment on 2-DOF robot, the effectiveness of the proposed method is confirmed. The proposed method could solve
the problem of difficulty in gain tuning of existing PID controller.

1. Introduction

PID controllers are found in large numbers in nearly all industrial
applications.'” For the systems where the dominant dynamics are of
the second order, the PID controller or minor variation of it controls
most systems. PID controllers are implemented in different forms and
are widely known for their effectiveness, simplicity, and applicability.
The PID control algorithm has been approached from many different
points of view. It can be viewed as a device which can be operated
with a few rules of thumb, and it can also be approached
analytically.'” Moreover, related research areas include anti-windup
schemes for saturation windup, and discretization and pre-filtering
schemes for digital implementation.'

In order to get a satisfied performance from a PID controller, the
parameters of the PID controller must be suitably tuned. In literature,
there exist several different methods to select the parameters of the
PID controller.' These methods differ mainly with respect to the
knowledge of the plant dynamics they require. In the classical
Ziegler-Nichols methods, the dynamics are characterized by two
parameters. In the step response method, they are taken from the open
loop step response. In the frequency response methods, the
parameters are the frequency and gain where the open loop dynamics
have a phase shift of 180 degrees. Another way to obtain a
characterization of plant dynamics with few parameters is to use the
approximated first or second order plant model. These methods
include the dominant pole design method and the closed loop pole
placement method.

PID controllers are designed based on on-quarter decay ration
using Ziegler-Nichols method and several others. Hence, overshoot is
obviously expected of those controllers. This unexpected
phenomenon is due to the effects of the uncertainties in the plant
model or the non-optimality in the selected controller parameters.
Furthermore, for the above methods to be successful in real
implementation, some tuning procedures with trials and errors are
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required for the optimal performance. From our experiences on real
applications, these tuning procedures are very time-consuming and
require significant costs. Especially in the case of MIMO plants, since
there are larger number of parameters, the overall tuning of
parameters can be more complex.

The time delay control (TDC) has been proposed as a robust
control algorithm for nonlinear plants.®!? By using the time-delayed
informations (the values of control input and derivatives of state
variables at the previous step), TDC estimates both the plant
dynamics and the uncertainties. Therefore, the resulting TDC can be
designed without an exact knowledge of the plant model. In addition,
the TDC, which has a similar structure with a disturbance observer,
has been shown to give robust control performances against
unmodeled nonlinear dynamics and unexpected disturbances.

Through the study of discrete implementation of TDC and PID
control algorithm, it is found that the two control systems have the
same structure. There are differences in the basic concept of the
controller and the procedure in selecting parameters. Motivated by
this finding, in this paper, a new systematic gain selection method for
the PID controller is proposed. The method is based on the concept of
the TDC. By the proposed gain tuning method, the conventional PID
controller can be visualized in another different angle. In other words,
the characteristics of the PID control system can be analyzed in terms
of the TDC theory. An important advantage of this method over other
method previously suggested is that it may be applied to real systems
with very simple and systematic procedure, and thereby it can solve
the problems of difficulties in the tuning of PID parameters.

In the following section, the discrete PID and TDC controllers
will be derived, and their similarity and differences will be
investigated. In Section 3, after reviewing the known gain selection
methods for PID controller, the new gain selection method using the
concept of TDC will be proposed for SISO systems. In Section 4, the
proposed method will be extended to MIMO systems. Section 5 will
present the simulation results and Section 6 will present the
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experimental results, followed by the conclusion in Section 7.

2. Discrete PID Controller and Discrete TDC Law

In this section, we will briefly review two controllers — the
discrete PID controller and the discrete TDC controller; after which,
the similarities and differences will be investigated. The plant
considered is the following second order nonlinear plant.

x =f(x)+ B(x)u
y=Cx

M

where x e R? R yeiRl ,and u eR' denote the state vector, the
plant output, and the plant input, respectively. Here, f(x) is the
nonlinear function, B(x) the nonlinear input distribution vector, and
C the output distribution matrix.

For the design of PID controller, we assume that the dominant
dynamics of (1) are of the following second order linear system.

X =X
X, = px, + p,x, +bu ®)
y=Xx

where x; and x, denote state variables in phase variable form,
respectively, and p;, p,, and b are the parameters of the system.

2.1 Discrete PID controller

While there are no industrial or scientific standards for PID
configurations, the widely used PID controller has the following form
in continuous time.

u(S) = K{"(S)—y(s)—TDsy(s)+&)T_sﬂ} (3)

1

where u(s),y(s), and r(s) denote the Laplace transforms of the
input, the output, and the reference commands, respectively. Here X,
Tp, and T; are the parameters of feedback loop gain, derivative
time, and integral time, respectively.

When one implements the continuous PID controller in the
domain of discrete time, there exist various forms of the digital
controller with respect to discretization methods.>* If we use simple
Euler approximation method, the PID controller is represented as the
following equation in discrete time.

u(k):u(k—1)+K{(r(k)—r(k—1))—(y(k>—y(k—1>)+;—5e(k>
. @
+;‘l(y(k)—2y(k—1)+y(k—2>)}

S

where e(k)=r(k)—y(k), and T, stands for the discrete sampling
time.

2.2 Discrete TDC controller

The first step in the TDC design is to select a reference model
such that the plant, (1), exhibits desirable linear behavior. In the
context of model reference control, let the desired performances be
specified by means of a stable linear invariant reference model as

X, = X, + r
L Kp -Ky Kp &)

Ym=[1 Oy,

where x,, eR? denotes the state vector of the reference model,
re®R! the command vector, and Kp, and K the parameters of
reference dynamics. For the nonlinear plant (1) to follow the linear

stable dynamics (5), TDC uses an efficient estimation method called
time delay estimation, which estimates both unknown plant dynamics
and plant uncertainties.®® Through this efficient estimation, the
resulting TDC can be represented as

u(t)=u(t-L) +%[— %o(t=L)—Kpx, —Kyxy + Kpr]  (6)

where L stands for the sufficiently small time delay, and b denotes
the constant value that is_determined in the range of B(x) ; the
criterion of determining » and L is described in Hsia and Gao
(1990)® and Youcef-Toumi and Ito (1990).°

When implementing the TDC of (6) in discrete time domain,
there exist various forms of controllers with respect to the methods of
discretizing x,(¢—L) . If we use the Euler approximation with
setting the time delay L to be the sampling time of digital
implementation, 7, then the resulting discrete TDC can be derived
as the following form:

u(k)=u(k—1)+%{er(k)—KV G-y~ Ty(’H))

§

T2

M
_G® - 2pGk -1+ (k- 2))}
s

2.3 Comparison of Two Controllers

As shown in (4) and (7), discrete TDC and PID controller have
the same structure in regulation problem ( #(k)=r(k —1) ). There are
differences in the physical meaning and selection methods of the two
controller parameters. If one compare (4) and (7), term by term, one
can easily find the relation between the parameters in two controllers.
The relation of parameters between the PID and TDC controllers is
listed in Table 1. This relation can give an insight to each controller
designers. In other words, the designers for TDC can visualize and
analyze TDC algorithm in terms of PID, and the designers for PID
controller vise versa. A
In the case of TDC, the parameters to be determined are Kp, K ,b,
and L. Among these parameters, the values of Kp and K are
usually pre-determined by the desired output dynamics; they are
determined by such conditions as rise time, overshoot, damping,
natural frequency, and so on. Accordingly, the remaining parameters
to be selected are b, and L. Following the guideline of parameters
selection of TDC in Hsia and Gao (1990)® and Youcef-Toumi and Ito
(1990),° b can be chosen in the range of B(x) with the condition
of a closed loop stability and the time delay L by a sufficiently
small value and considering the desired closed loop bandwidth. Since
an excessive small L makes worse the performance of sensitivity to
measurement noise, one must select proper L to compromise the
robustness against plant uncertainty and the sensitivity to
measurement noise.

Table 1 The relation between PID and TDC parameters

PID parameters TDC parameters

X K

5L
T 1

D KV
K

T, L

Kp

3. Design of PID controllers Using the Concept of TDC

Based on the results of the previous section, this section presents
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a new selection method of PID parameters using the concept of TDC.
After briefly reviewing of known design methods of PID controllers,
we will present the proposed method.

3.1 Known Design Methods of PID Controllers

The design methods of PID controllers differ by the required
information of the plant model. These methods can be divided mainly
into two categories; the first includes the methods using the frequency
response or step response of the plant, the second includes those using
first or second order approximated plant model. The former methods
include widely used Ziegler-Nichols(1990Y methods, and the latter
includes dominant pole design method, pole placement method, and
direct pole placement with cancellation methods.

In the position or velocity control of servo systems, the gains of
the PID controller have to be tuned so that the response satisfies some
pre-assigned constraints on rise time, damping, overshoot, and natural
frequency. In addition, sensitivity to external disturbance has to be
minimized without violating these requirements. However, in real
application, the designed PID controllers do not always give the
satisfied control performance. One of the difficulties is the
unpredictable influence of unmodeled plant behavior, such as
saturation, Coulomb friction, and higher order dynamics. Furthermore,
several gain tuning procedures are required for optimal behavior.
Often, these procedures appear to involve significant time and
excessive cost. Especially, in MIMO systems, the difficulties may be
larger.

3.2 Design of PID controllers Using the Concept of TDC

By comparing the parameters listed in Table 1, the parameters of
PID controller can be selected by the following procedure using the
concept of TDC.

1. Choose the desired dynamics of closed loop system; for example,
let the desired natural frequency be @, and the desired
dampingratio § (Kp= a),f,KV =2¢w, ).

2. Using the parameters’ relation between PID controller and TDC
controller, select 7; and T as

Tp=ei-T; =2 ®)
24’0)’1 a)n

3. Select the sampling time of the controller by a rule of thumb as

T, =2 (1/5~1/100) ©9)
a)n

4. From the results of Hsia and Gao,? and Youicef-Toumi and Tto,”
select the value of b from this relation.”

b>1/2b (10)

5. Using the parameters’ relation between PID controller and TDC
controller, select K as

2{6’” (1)

bT,

5

K=

6. Finally, if needed, tune the value of b more finely.

3.3 Characteristics of Proposed PID Structure

In order to investigate the characteristics of the proposed
parameter selection method, consider a x-th order linear plant of the
following form.

Y This result comes from the stability analysis of TDC. The larger
values of b increases the stability margin, but decreases control
performance.

Gsy=28) Ky = Ky (12)
u(s) (A+sr)---(+s7,) C(s)

Applying the proposed PID controller into (12), the closed loop input
output transfer function can be represented as follows (Fig. 1).

F(sy=22 o 1 (13)
) L (2 + Kys+Kp)
Ky

In addition, the output transfer function with respect to the
disturbance d(s) can be represented as

y(s) bLs
== 14
Fy(s) RN - (14)
*C(S)"‘(S“ +KVS+KP)
Ky
d(s)
é i Plant )
+ u(s) "
PID |- rs)

Fig. 1 Feedback System

If the desired closed loop dynamics is the critical damped system

with the natural frequency of @, and with setting b=K u » then the

values of K}y and Kp are K =2w, and Kp :a)n2 . From these,

Fi($)=——— and

become to 5
(s+w,) +A(s)

(13) and (14)

Ay (s)
(s+0,)> +A(s)

A,(s) have a value close to zero as the time delay L becomes

F(s)= , respectively. Furthermore, A;(s) and

sufficiently small, thereby F(s) and F,(s) are approximated by

1
F(s)m— (15)
) (s+a)n)2
0
F(s)m——— (16)
:(5) (s+w,)

In other words, by selecting the time delay L to be sufficiently
small, one can obtain a response that the output follows the desired
response well and does not affected by the external disturbance.
However, excessively small value of L can make the performance of
sensitivity to measurement noise worse. Therefore a careful tuning of
L is required for a good compromise between robustness and
sensitivity.

From now, we will investigate the feature of closed loop pole
due to the variations of 5. Firstly, for a simple second order plant,
1/ s2, we select gains, ¢ ,®,, and L by using the procedure of
Section 3.2. With the fixed ¢ ,®,, and L, we make variations on
b. This is the same case with that K is varied with the fixed
T;,Tp, and T in the PID controller. The root locus in this case is
plotted in Fig. 2 where the points by o represent the desired closed
loop poles. Shown in the Figure, as b gets smaller, the closed loop
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poles go to desired poles. Therefore sufficiently small b can makes
the closed loop dynamics to desired one. In contrast, as b gets larger,
the damping of the complex poles in the closed loop system becomes
smaller, thereby a little oscillation or overshoot may appear in the

response.
) 1
<«— Increasing of —c
b
=
©
£ <
S <
O
£

Real

Fig. 2 Root locus of PID closed loop system

4. MIMO Design

This section extends the proposed gain selection method of
Section 3 to MIMO plant having » inputs and # outputs. In general,
since there exist inter-connections between each loop, the gain tuning
problem is more complex and time-consuming than the SISO cases.
For this plant, the number of parameters to be determined is 3n° for
full matrix PID controller, and 37 for decentralized PID controller.

For the analysis, considered MIMO plant can be approximated
to the following 2#n-th order linear system.

el
X= X+ u

where 0, denotes n dimensional zero matrix, I, #» dimensional
identity matrix, and

Py Pn) bay v by

B= ¢ . i |[c=[1, 0,]
)

P=

P(,n) P(n,n) by

For the plant (17), let the desired performances be specified with
the response of a stable linear time invariant model as

% {"" I":|x {"" } (18)
"l A, |"|B,_

mr "

where x,, eR?" denotes the state vector of the reference model,
re®R” the command vector, A, the system matrix, and B, the
command distribution vector. Here, A,,. and B,, have the
following elements from the desired dynamics.

Ay, = [_KP _KV]?er =Kp

with K p =diag|K p),--, K p, Ky = diag[Ky1,,Kyp]

Following the results in 3, 6], then the following control input
m=Ly| %= L)~ Kpxy = Kypxn + Kpin
: +B7! :

(19

u= : :
un(t_L) xZn(t_L)—Kann = KyuXon + Kphy

makes the plant dynamics, (17) follows the reference model, (18),
where B = diag(b,,---,b,) is nxn dimensional diagonal matrix.
B(x) must be selected by the following condition.%’

Hl—lz(x)l?r1

\<1 (20)

If the controller in (19) is discretized by Euler approximation, the
resulting controller is the same structure with the following #-th order
decentralized PID controller.

r.(s)—y,(s)}

K, [’1(3) = n(s)=Tysp,(s) +
T, s

u(s) = : en

r(s)-y,(s

K, [ () 30 ()~ T 59, (5) +M}

T,s

By using the previous results of PID controller gain tuning to (19) and

(21), the gain selection methods for MIMO PID controller can be

summarized as follows: 1) From the desired response of the i-th

output, selgct the parameters, 7j; and Tp,; 2) Based on the stable

range of B, select K;. Although the plant is MIMO, the resulting
procedure is very simple and systematic.

5. Simulation

In order to demonstrate the effectiveness of the proposed gain
selection method of PID controller, a fourth order linear system is
simulated. The system is written below,

1

= (22)
(14 8)(1+0.25)(1 + 0.055)(1 + 0.01s)

G(s)

As mentioned earlier, Ziegler-Nichols method uses one-quarter
decay ratio as the performance criterion for designing PID controllers
and therefore it is not fair to compare the TDC controller which is
based on a reference model for the desired response. It is noted that a
critically damped response is chosen here as the desired response.
Instead, it is suggested to use direct synthesis controllers designed for
the same desired response.

The designed parameters by well known methods are listed in
Table 2, and the procedures are discussed in depth in Ziegler and
Nichols.” Then, the control performances when the unit step input is
applied are tested.

Table 2 Selected PID parameters

Method K T; Tp
Ziegler-Nichols Step 10.9 0.32 0.08
Ziegler-Nichols Freq 15.0 0.31 0.08
Dominant pole design 11.9 0.45 0.12

Pole Placement 12.0 0.37 0.11

Fig. 3 shows the simulation results when the parameters in Table
2 are used. As shown in Fig. 3, the responses of Ziegler-Nichols
methods have a relatively larger overshoot and smaller damping.
These unsatisfactory responses can be analyzed by visualizing the
PID gains in terms of TDC gains. If we change the selected gain by
Ziegler-Nichols method into matched TDC gains using the relation in
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Table 1, the matched TDC gain, Kp,K),, and b can be the values
of the following; Kp=36.1, K}, =122, and 5=600 with
L=0.002 (critical damping system with a natural frequency of 6.1).
However, since the matched b =600 is too large, the responses are
largely deviated from the desired responses. In the pole placement
method and dominant pole design method, even though the
responses of the two methods have a smaller overshoot than Ziegler-
Nichols method, the performances do not follow the desired one
which does not have an overshoot.

In order to test the performance of proposed design method, the
simulation was performed by setting L=0.002, @,=35.0, and
¢ =1.0 according to the variation of b. It is seen that b <30, the
response is becoming unstable whereas when b>600, there is an
overshoot. If b is adequately selected (40 < b < 300 ), the responses
follows desired one pretty well without overshoot.

proposed method reveals more overshoot and oscillatory responses
than the pre-determined desired response. In addition, as the payload
is increased to 10kg, the deviations of responses are large. In contrast,
as for well tuned B = diag(1.7><103,3.3x 103) , the control
performances of the proposed method follow the desired responses
well in both case without payload and with 10 kg payload, thereby
demonstrating the robustness of the proposed methods to the payload
variation.

Ziegler Step Ziegler Freq
15—y
1
1
05
05
0 0
0 5 10 0 5 10
Dom. Pole Design Pote Placement
15 15
1 - 1
0.5 0.5
0 0
0 5 10 0 5 10

Fig. 3 Responses of well known PID gain selection methods

6. Experiments

In order to test performances of the proposed method to a real
system, the proposed method is applied to the position control of two
degree of freedoms SCARA robot. This system is categorized into a
MIMO plant having two inputs and two outputs. Thus, MIMO design
method is required for the controller design. In this experiment,
MIMO PID controller is designed based on the concept of MIMO
TDC.

The experimental system consists of the following components:
Each joint of the joint, driven by through harmonic drives with
reduction ratio of 100:1 for joint 1 and 80:1 for joint 2, has a resolver
with a resolution of 4096 pulses/rev for position measurement. For
link 1 and 2, the lengths are /; =35¢m and [, =20cm, the masses
are my=11.17kg and m, =6.82kg , the moments of inertia are
I :].O3kgm2 and 7, =0.224kgm2 , and the distances from joints
to the center of mass are L; =30cm and L; =28cm , respectively.
For this robot, an accurate dynamic model is available.'* The digital
implementation of the controller was made with the sampling
frequency 200Hz in a multiprocessor based system called
CONDOR."

For link 1 and 2, the natural frequencies and damping ratios of
desired response are set to be @, =@,; =10.0 and {;=¢,=1.0.
Then, we make experiments varying the value of B.In addition, in
order to check the robustness of the proposed method, the
experiments are performed when the payload is increased to 10 kg
payload.

Fig. 5 and Fig. 6 show the responses of proposed methods. As
shown the figures, when the values of B is larger than
b= diag(1.7 x 10°,3.3x10%) , the control performances with the

bhat=30 bhat=40
15 15
1 WWWJ 1
05 05
% 5 10 % 1
bhat100 bha300 0
1 1
05 05
% 5 10 % 5 10
bha600 bhat21000
15 15
1 1
05 05
0 0
0 5 10 o 5 10

Fig. 4 Responses of proposed gain selection method

No Load No Load
6 6
] = — -
3 B
o4 )
Sl f é
=3 =
a ) p
B2 3
=N =
1
A
0 -2
0 1 2 0 1 2 3
Time(s) Time(s)

-.-.-: B =diag(10x10°,20x10%)
----- : B =diag(5x10%,6.6x10%)
: B =diag(1.7x10° 3.3x10%)

Fig. 5 Experimental results of robot manipulator without payload

10kg Load

o

(=2
-

Theta 1(Degree)
E-N

N

=

10kg Load

Theta 2(Degree}
S~ @ w©

N

(=]

: B =diag(10x10°,20x10°%)
: B =diag(5x10°,6.6x10%)
: B =diag(1.7x103.3x10%)

Fig. 6 Experimental results of robot manipulator with 10 kg payload

7. Conclusion

Based on the study of discrete PID controller and discrete TDC,
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this paper proposed a new design method for PID controller using the
concept of TDC. The proposed method makes it possible to
understand the conventional PID controller newly with the concept of
TDC. By the proposed method, one can design the PID controller
which makes the plant follow the pre-designed desired response well
in the face of modeling error and uncertainty in plant dynamics.
Furthermore, the proposed method is so simple and systematic that it
can solve some difficulties in the gain tuning of conventional PID
controller.

Simulation results on fourth order linear SISO system verify that
the proposed method is an effective and simple way to select the
gains. From the experiment on a robot position control, we have
shown that the proposed method may be effectively used in a real
control system.
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