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The Fourier-Mellin transform is the theoretical basis for the translation, rotation, and scale invariance of an image.
However, its implementation requires a log-polar map of the original image, which requires logarithmic sampling of a
radial variable in that image. This means that the mapping process is accompanied by considerable loss of data. To
solve this problem, we propose a dual log-polar map that uses both a forward image map and a reverse image map
simultaneously. Data loss due to the forward map sub-sampling can be offset by the reverse map. This is the first step
in creating an invertible log-polar map. Experimental results have demonstrated the effectiveness of the proposed

scheme.

1. Introduction

The recognition of a target object can be an important
consideration in machine vision and image processing. Methods that
will still distinguish the target object despite any translational,
rotational, or scale changes it may experience are required. One such
method is the invariant image transform. The Fourier-Mellin
transform,'® which is a combination of the Fourier and Mellin
transforms, provides the necessary invariant properties and requires
the use of a log-polar map.” Use of the log-polar map for image
registration in the recovery of large-scale similarities has been
described previously.®

There have been many approaches to Fourier-Mellin transforms
including the optical implementation'® and the digital
implementation.™® However, most research has focused on the
confirmation and/or theoretical enhancement of the well-known
Fourier and Mellin transformations.

The Fourier transform of a translated image gives the same
Fourier magnitude as the untranslated image. Only their Fourier
phases are different. We have translational invariance if we consider
only Fourier magnitudes. If an image rotates, the Fourier transform of
the rotated image also rotates by the same amount. This gives the
rotational invariance. The final and most problematic invariance is
scale invariance, which requires the Mellin transform. Unfortunately,
the Mellin transform is equivalent to the Fourier transform of the log-
scaled radial (or modulus) variable. This log-125 polar map causes
considerable data loss at the edges of the image due to the nonlinear
sub-sampling.

The implementation aspects of the invariant image transform
using a log-polar map have been described.’” This approach succeeded
in implementing the Fourier-Mellin transform by a log-polar map.
Unfortunately, this watermarking application did not include direct
application of frequency domain watermarking due to the non-
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invertible sub-sampling of the log-polar map. In a log-polar map, we
first convert the rectangular coordinates of an image to polar
coordinates and then logarithmically sample the radial variable of the
image. This results in dense sampling in the vicinity of the image
center. At the edges of the image, however, the sampling becomes
very coarse and therefore data are lost. Once data are lost, they can
never be recovered. Thus, a log-polar map is not invertible.

In this paper, we propose a dual log-polar map to help make a
log-polar map invertible. The dual log-polar map has two log-polar
maps in parallel: a forward-image and a reverse-image log-polar map.
The forward-image map is the same log-polar map as that
implemented by O’Ruanaidh and Pun.” However, the reverse-image
map uses a reverse image prepared from a copy of the original image
by rotating each quadrant of the original image through 180°.
Consequently, the loss of information at the edges of the image in the
forward map is compensated by the reverse map that loses data in the
middle of the image. We believe that this approach can solve the
inherent sub-sampling problem of a log-polar map. We describe the
advantages and limitations of this dual log-polar map algorithm in the
following sections.

In this paper, we propose a dual log-polar map designed to create
an invertible log-polar map, and discuss the results of analysis of the
reverse-image log-polar map. Simulation results confirmed the
feasibility of the proposed dual log-polar map.

Section 2 describes the translation-, rotation-, and scale-
invariance. Section 3 develops the proposed algorithm of the dual
log-polar map, and explains the experimental results. Section 4
contains the conclusion and discusses areas for further study.

2. Invariant Image Transform (Fourier-Mellin Transform)

The invariant transform can be accomplished by moment
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invariants® and/or Fourier-Mellin transformation. In this paper, we
focus on the transformational method. Figure 1 shows the original
forward and reverse images. The reverse image is constructed from
the forward (original) image by rotating each quadrant by 180°.

Fig. 1(a) Original “Lena” forward image

Fig. 1(b) “Lena” reverse image

2.1 Translation, Rotation, and Scale Invariance
2.1.1 Translational Invariance

When an image f(x, y) is translated to f'(x — x4, — ¥, ), the

Fourier transform is
Fr(u,v)=e /™I F(u,v), M

where F(u,v) and Fr(u,v) are the Fourier transforms of

f(x,y) and f(x—Xy,¥—Yy) , respectively. By taking the

magnitudes of F(u,v) and Fr(u,v),
| Fr@v)] = [/ F@y)| = [Fuy)], @

the translational invariance is obtained theoretically. In the discrete
case, translation becomes a circular shift of the image.

While Eq. (2) does represent translational invariance, there is one
practical problem. As the center of the image does not usually
coincide with the image centroid, finding the center of the image
without human intervention is not a simple matter. We must assume
that the image center is known a priori; otherwise, we must have
some means of finding the image center. There is one method for this
that uses the central moment:’

[foreasay [ [ureeyandy
[Jreyasay” [frceyddy

xy) = @)

where (| 7(x, y)dxdy 18 the zero-order moment (total image power),
and the iumerator entries are the first-order moments of the x- and y-
coordinates, respectively. The only problem with this approach is that
an image that is circularly shifted by the image centroid is not
pleasing to the human eye.

2.1.2 Rotational Invariance
When an image f(x,y) is rotated by 8, the rotated image is
expressed by

Jr(x,¥) = f(xcosb, —ysinf, xsinb + ycosby), (4)
and its Fourier transform is

Fp(u,v) = F(ucosb, —vsind,, using,+vcoséy). (5)

The rotation angle @, is preserved exactly in both the spatial and
Fourier domains.

2.1.3 Scale Invariance
If we assume that the x- and y-coordinates of the image have the
same scale factor [, then

1 u v
X, & Fowy) = —F(—,—)- (6)
T (B, By) s(u,v) 7 (,B ﬂ)
The real difficulty of this form for <1 is that the sub-sampling of
f(x,y) causes a change of information in the discrete
implementation. However, as bilinear or other interpolation methods
can be used, we may assume that the data loss is not severe. The
scaling of the Fourier coefficient, 1/ 3%, is not a problem on its own,
and in fact may be used to determine the scale factor by comparing
the magnitudes of both transforms, F'(u,v) and Fg(u,v).
When all three variances are combined, the corresponding Fourier
transform becomes

|FT,R,S(M’V)|

'—817| F(%cos@O ~Lsin é,, %sin@o +%cos€0) . Q)

Note that if the image center is known precisely and the
translational invariance is implicit, then the modulus operation | -| is
not necessary.

2.2 Polar Converted Image
If the polar converted image is denoted by P(r,8) = f(x,y),
then it is easy to show that Egs. (5) and (6) can be combined into

Pps(r,0) = P(pr,0+6,). (8)

If the translational invariance is not implicit, P(r,6) = | F(u,v)|,
and Eq. (8) must be interpreted as

1 r
Prs(r,0) = FP(E,QJH%). ®

2.3 Mellin Transform
The Mellin transform can be derived from the two-sided Laplace
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transform
o

Mrpo(s) = [e7P(p,0) dp. (10)

—00

Let e’ =, then P(p)=P(Inr) and dr =rdp . Then, Eq. (10)
becomes

M paray(8) = J-r_S_IP(lnr,Q) dr | an
0

where s =0+ jw and r>0.

When  P(r,0) =f(x,y) , the scaled function Ps(p,6)
= P(In fr,8) has the Mellin transform
o
M p(in gy (8) = I’”_S_IP(lnﬂrﬁ) dr = ﬁSMP(Inrﬂ)(s)-
0

(12)

As [B° |, = le™#| _.. = 1, we obtain the required scale

invariance of

=j@

| M pin oy (5) 1 = | Mpgn,p(s) 1. (13)

Equations (10) and (13) indicate that we can implement the Mellin
transform of P(In#,8) by the Fourier transform of P(p,6) .

If the translational invariance is not implicit, the polar form of
P(r,8) = f(x,y) becomes P(V,9)=L2'F(%,—2—) 1 and the scaled

. | - . . .
function becomes Py(p,0) = P(lnﬁ’ 6)- To achieve scale invariance,

we require that | MP(lnﬂr.e)(s) | = |ﬂ7$_2MP(lnr.9)(s) {. The

conditions for this are either o5=—2 or pg=1 and

©= % n=012,...- Note that g =1 means no scale change. In this
n

case, it is very difficult to implement the scale invariance due to the
discrete nature of the frequency @ . Without the scale term 1/ g2, we

achieve scale invariance and it can be resolved by normalization later.

2.4 Fourier-Mellin Transform

When we perform the Fourier transform of the rotated and scaled
polar image of Eq. (8) in both In» and @ coordinates, we obtain the
two-dimensional Fourier transform

2x oo
FM ppo)(@,,005) = _[ _[e“j‘“’f””’””g)P(p,e) dpdo . (14)
0 0

As the rotation- and scale-changed image has the transform
-7 1 7
FMys(0,.0p) = " et M0, 05), (15)
the final invariance is obtained by taking its Fourier magnitude as

| FM g 5(@,.0) | =] e P FM (0, 04)]

= |FM(w,,w4)]. (16)

If the image is not translationally implicit, Eq. (16) must be read as

jw , In —7 1
| FMp g s(@,,09) | = fe’ Pe ngaoFFM(wpvwe)l
= B IFM(w,,0y)], (17

and the following normalization step is required

LMy g s(@,,00) | | FM(0,,0p) | a8)
| FM7.2,5(0,0) | | FM(0,0) |
3. Dual Log-polar Map

A logarithmic r-coordinate conversion of the polar converted
image is required to implement Eq. (16). This process is accompanied
by the serious problem of data loss at the edges of the image due to
the logarithmic sub-sampling. To avoid this, we use another log-polar
map of the reverse image in parallel. The subsequent switching of the
recovered image will compensate in large part for the lost data.

3.1 Discrete Fourier Transform of Reverse Image
The reverse image of Figure 1(b) can be interpreted as the two
consecutive  operations  of  f[((-x,-y))]y, followed by

f[((x_%’y_%»]]v. The first operation f[((~x,—y))]y is the 180°

rotation of f(x,y) as the discrete Fourier transform (DFT) is

circularly periodic. The second operation is the cross-diagonal
swapping of the image quadrants; the first quadrant swaps with the
third, and the second with the fourth.

When the DFT of f(x,y) is F(u,v), the DFT properties'® of the

two operations  f[((-x,~y))]y and f[¢ x_%’., y,%))] Ly are,

respectively,

==y < F(uy), (19)

and
f[«x—%y—%m]v & DU Fu). @)

As indicated by Eqgs. (19) and (20), the recovery of the forward
image from the Fourier transform of the reverse image can be
obtained by the inverse Fourier transform of (—1)*™ F" (u,v) .

3.2 Implementation Results

We produced log-polar maps of the forward and reverse images
using the algorithm of O’Ruanaidh and Pun.” Figures 2 and 3 show
the log-polar map images of Figs 1 (a) and (b), respectively.

Fig. 2 Log-polar map of the forward image
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Fig. 3 Log-polar map of the reverse image

The resolution of both figures in the log-polar maps is 256x1.414
in the r-coordinate and 256 in the O-coordinate. In both figures, the
horizontal axis is the f-coordinate, and the vertical axis is the r-
coordinate. The upper horizontal line is the log-polar map of the
single point at the image center. The four cross-points on the bottom
line correspond to the four corners of the image.

Figures 4 and 5 show the recovered images (inverse log-polar
mapped images) of the forward and the reverse images, respectively.
Figure 4 clearly shows the sub-sampling effect at the edges of the
forward image.

Fig. 4 Forward recovery from the inverse log-polar map of the
forward image. The sub-sampling effect at the edge of the image is
quite obvious

Fig. 5 Reverse recovery from the inverse log-polar map of the reverse
image. The sub-sampling effect in the middle of the image is obvious

However, in Fig. 5, the sub-sampling effect occurs in the middle
of the image. This is why we prepared the reverse image for the
reverse log-polar map. With this arrangement, we have two log-polar
recoveries: the forward map recovery that is most accurate inside, and
the reverse recovery that is most accurate outside.

Figure 6 shows the switched selection of the recovered images.
The inner image is selected from the forward recovery and the outer
image from the reverse recovery. The switching occurs at the
perimeter of the diamond-shaped switch box expressed as the
absolute value of rectangular coordinates by

Ix|+|yl<d,, @1

where d, is half of the image length.

If Eq. (21) is satisfied, we choose forward recovery; otherwise,
we choose reverse recovery. In Fig. 6, an artifact of the diamond-
shaped switch box can be clearly seen; it is especially evident in the
background white rod on the left-hand side of the image. The reason
for this is that the circular polar orientations are in opposite directions
in each map.

Fig. 6 Switched selection of recovered images. The inner image is
selected from the forward recovery and the outer image from the
reverse recovery using a diamond-shaped switch box

Fig. 7 Switched selection of recovered images. The inner image is
selected from the forward recovery and the outer image from the
reverse recovery using a circular switch box

We used a circular switch box to remedy the artifacts created by
the diamond-shaped switch box. This is a very natural choice
considering the nature of polar coordinates. In this particular image, a
switch circle with a diameter of two thirds of the image length gives
good results. Equation (22) expresses the circular switching formula
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(24 22)
X +y < gd, ,

where the switching radius Ed is close to ﬁéd .
37 !

Figure 7 shows such a switching strategy. The analytical method
of minimizing the distance measure of the switched and original
images, using the switch shape as a parameter, could also be used.

Continuing work on this topic involves refinement of a polar
conversion grid for both forward and reverse images, and the study of
the feasibility of multiple (e.g., 4) log-polar maps using 2 forward and
2 reverse images each offset by half a quadrant width from the others.
This should reduce the discontinuity in the middle of the image fairly
well.

3.3 Comparison of Computational Complexity

The cost of the proposed dual method is the increased

computational complexity. It is well known that a 1-dimensional fast
Fourier transform requires only half of Nlog, N multiplications."
As a 2-dimensional FFT can be computed by a series of 1-
dimensional FFT pairs, the total number of multiplications required
is Nlog, NV, where N isthe number of pixels in the image.
The log-polar conversion was performed for 4 quadrants separately.
Each quadrant conversion requires (N /2)2 multiplications as the
operation requires the calculation of log-polar sub-sampling grids. As
a result, for forward recovery, log-polar and inverse log-polar
conversion require 2 - 4 - (V/2)%, and FFT and inverse FFT require 2 -
N logy(N) multiplications.

Preparation of the reverse image requires 180° rotation of each
quadrant for the reverse recovery. This requires 4 half-image-sized
FFTs and results in 4 - (N/2) log, (N/2) additional multiplications,
ignoring the multiplication by —1. The dual log-polar method requires
roughly twice the computational complexity of the single forward
map alone.

The running time for the MATLAB program to produce Fig. 2 is
3.04 s, and that for Fig. 3 is 2.9 s on a Pentium PC, including the
display of the image. The inverse operation takes approximately the
same time. The interpolation complexity is larger in the forward
image map.

3.4 Application Areas

Application of the proposed scheme is possible on any system
that experiences translational, rotational, and scale changes. In
particular, the scheme is well-suited to a system that requires the
inverse transform to recover the original images. A watermarking
scheme that authenticates the copyright of the original image sources
is one good example.’

Another possible application in machine vision is the
identification of rotation angles. Figure 8 shows the recovery of the

Fig. 8 Forward recovery of rotated (15°) and scaled (0.9) image

Fig. 9 Reverse recovery of rotated (15°) and scaled (0.9) image

“Lena” image that has been rotated 15° and scaled by 0.9. The image
suffers the problem of polar conversion, which causes a sawtooth
image boundary. This phenomenon is an open problem in any
procedure involving rotation.

In this case, we can use the reverse recovery as shown in Fig. 9;
the rotated image boundary is fairly straight. A stereoscopic vision
system to obtain depth information'’ may be used with the proposed
scheme.

4, Conclusions

In this paper, we proposed a dual log-polar map as a prototype for
a true translational-, rotational-, and scale-invariant transform. The
compensation for the lost data in the forward log-polar map is
achieved using the reverse log-polar map. The reverse map does not
mean a simple reversal of image direction. It satisfies the Fourier
transform properties that are necessary for the invariant transform.
The invariant image transform is purely theoretical in the continuous
spatial domain, but has several fundamental problems: it loses data
due to sub-sampling, it is not reversible due to the Fourier magnitude,
and it always requires interpolation. The experimental results showed
that the proposed algorithm works quite well in providing a solution
to the first of these problems.

Further studies to continue this research are refinement of the
polar grid for both log-polar maps and consideration of the proposed
algorithm for machine vision applications.
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