Analysis of Mixed-mode Crack Propagation by the Movable Cellular Automata Method

  • Chai, Young-Suck (School of Mechanical Engineering, Yeungnam University) ;
  • Lee, Choon-Yeol (School of Mechanical Engineering, Yeungnam University) ;
  • Pak, Mikhail (School of Mechanical Engineering, Yeungnam University)
  • 발행 : 2008.10.01

초록

The propagation of a mixed-mode crack in soda-lime silica glass is modeled by movable cellular automata (MCA). In this model, a special fracture criterion is used to describe the process of crack initiation and propagation. The results obtained using the MCA criterion are compared to those obtained from other crack initiation criteria, The crack resistance curves and bifurcation angles are determined for various loading angles. The MCA results are in close agreement with results obtained using the maximum circumferential tensile stress criterion.

키워드

참고문헌

  1. Neumann, J., 'Theory of Self-Reproducing Automata,' University of Illinois Press, pp. 6-8, 1966
  2. Toffoli, T. and Margolus, N., 'Cellular Automata Machines,' The MIT Press, pp. 6-9, 1987
  3. Sipper, M., 'Evolution of Parallel Cellular Machines: The Cellular Programming Approach,' Heidelberg: Springer-Verlag, pp. 73-78, 1997
  4. Burks, A. (Ed.), 'Essays on Cellular Automata,' University of Illinois Press, pp. 50-53, 1970
  5. Smith, A., 'Cellular Automata Theory,' Technical Report 2, Stanford University, pp. 15-19, 1969
  6. Popov, V. L. and Psakhie, S. G., 'Theoretical Principles of Modeling Elastoplastic Media by Movable Cellular Automata Method - I. Homogeneous Media,' Phys. Mesomech., Vol. 4, No. 1, pp. 15-25, 2001
  7. Psakhie, S. G., Horie, Y., Ostermeyer, G. P., Korostelev, S. Y., Smolin, A. Y., Shilko, E. V., Dmitriev, A. I., Blatnik, S., Spiegel, M. and Zavsek, S., 'Movable Cellular Automata Method for Simulating Materials with Mesostructure,' Theoretical and Applied Fracture Mechanics, Vol. 37, No. 1-3, pp. 311-334, 2001 https://doi.org/10.1016/S0167-8442(01)00079-9
  8. Lee, S. W., Han, S. W. and Lee, H. S., 'Reliability Evaluation of an Oil Cooler for a High-Precision Machining Center,' International Journal of Precision Engineering and Manufacturing, Vol. 8, No. 3, pp. 50-53, 2007
  9. Kim, S. K., 'Object-oriented Development of Computer Code for Inverse Heat Conduction Problem,' International Journal of Precision Engineering and Manufacturing, Vol. 8, No. 1, pp. 59-65, 2007
  10. Kwak, D. S., Kim, S. H. and Oh, T. Y., 'Effect of a Single Applied Overload on Fatigue Crack Growth Behavior in Laser-welded Sheet Metal,' International Journal of Precision Engineering and Manufacturing, Vol. 7, No. 3, pp. 30-34, 2006
  11. Chun, D. M., Kim, M. H., Lee, J. C. and Ahn, S. H., 'A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions,' International Journal of Precision Engineering and Manufacturing, Vol. 9, No. 1, pp. 51-53, 2008
  12. Son, I. S., Cho, J. R. and Yoon, H. I., 'Effects of a Moving Mass on the Dynamic Behavior of Cantilever Beams with Double Cracks,' International Journal of Precision Engineering and Manufacturing, Vol. 9, No. 3, pp. 33-39, 2008
  13. Beoek, D., 'Elementary Engineering Fracture Mechanics,' Sijthoff and Noordhoff, pp. 86-89, 1978
  14. Erdogan, F. and Sih, G. C., 'On the Crack Extension in Plates Under Plane Loading and Transverse Shear,' J. Basic Engineering, Vol. 85, No. 1, pp. 519-527, 1963 https://doi.org/10.1115/1.3656897
  15. Hussain, M., Pu, S. and Underwood, J., 'Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II,' ASTM STP 560, Vol. 1, No. 2, pp. 2-28, 1974
  16. Sih, G. C., 'Strain Energy Factors Applied to Mixed Mode Crack Problems,' Int. J. Fracture, Vol. 10, No. 3, pp. 305-314, 1974 https://doi.org/10.1007/BF00035493