Effect of Leuconostoc kimchii GJ2 Isolated from Kimchi (Fermented Korean Cabbage) on Lipid Metabolism in High Cholesterol-Fed Rats

김치로부터 분리한 유산균 Leuconostoc kimchii GJ2가 고콜레스테롤식이를 급여한 흰쥐의 지질대사에 미치는 영향

  • Lee, Jae-Joon (Department of Food and Nutrition, Chosun University) ;
  • Lee, Yu-Mi (Department of Food and Nutrition, Chosun University) ;
  • Kim, Ah-Ra (Department of Food and Nutrition, Chosun University) ;
  • Chang, Hae-Choon (Department of Food and Nutrition, Chosun University) ;
  • Lee, Myung-Yul (Department of Food and Nutrition, Chosun University)
  • Published : 2008.10.31

Abstract

The present study investigated the effect of Leuconostoc kimchii GJ2 (Leu. kimchii GJ2), an exopolysaccharide-producing lactic acid bacterium isolated from kimchi, on serum and liver lipid metabolism in rats fed a high-cholesterol diet. Male Sprague-Dawley rats were divided into four groups: a normal diet group (ND), a high-cholesterol diet group (HCD), a high-cholesterol diet and 200 mg/kg Leu. kimchii GJ2-administered group (HCD-LKL), and a high-cholesterol diet and 400 mg/kg Leu. kimchii GJ2-administered group (HCD-LKH). No between-group differences were found in body weight gain, food intake, or food efficiency ratio. The serum GOT and ALP activities that were elevated by the high-cholesterol diet were significantly decreased after Leu. kimchii GJ2 administration. Serum HDL-cholesterol level was markedly increased in the Leu. kimchii GJ2-administered groups, whereas the serum total cholesterol and LDL-cholesterol levels were lower in the Leu. kimchii GJ2-administered animals. Liver levels of total cholesterol and triglyceride were also markedly lower in the Leu. kimchii GJ2-administered groups. In addition, increased activities of HR-LPL and TE-LPL in adipose tissue, caused by the high-cholesterol diet, fell to normal after administration of Leu. kimchii GJ2, in a dose-dependant manner. These results suggest that Leu. kimchii GJ2 isolated from kimchi exerts an antiatherosclerotic effect by reducing serum and liver cholesterol levels.

EPS 생성 유산균인 Leu. kimchii GJ2의 생리활성 효능을 구명하기 위하여 고콜레스테롤식이를 급여한 흰쥐에게 Leu. kimchii GJ2 투여로 고지혈증 개선효과를 조사하였다. 체중증가율, 식이섭취량 및 식이효율은 실험군 간의 차이가 없었으나, 체중당 간의 무게는 고콜레스테롤식이군 (HCD)이 다른 실험군들에 비하여 유의하게 증가되었다. 고콜레스테롤식이 급여로 증가된 혈청 중 GOT 및 ALP 활성은 Leu. kimchii GJ2 투여 병합투여로 활성이 감소되었으며, Leu. kimchii GJ2 투여 용량이 증가할수록 농도 의존적으로 감소하였다. 혈청 중 중성지방과 인지질 함량은 실험군 간에 유의차가 없었으나, 총콜레스테롤 함량은 고콜레스테롤식이군(HCD군, HCD-LKL군 및 HCD-LKH군)들 간에 유의차를 보여 Leu. kimchii GJ2 투여 용량이 증가할수록 감소하였다. 고콜레스테롤식이와 Leu. kimchii GJ2 병합투여한 HCD-LKL군과 HCD-LKH군은 HCD군에 비하여 HDL-콜레스테롤 함량은 증가하였으나, LDL-콜레스테롤 함량, 심혈관위험지수 및 동맥경화지수는 유의하게 저하되었다. Leu. kimchii GJ2 투여 용량이 증가할수록 HDL-콜레스테롤 함량은 농도 의존적으로 증가하였고, LDL-콜레스테롤 함량은 저하되었다. 간조직 중 총콜레스테롤 및 중성 지방 함량은 HCD군이 ND군에 비하여 유의하게 증가되었으며, 고콜레스테롤식이와 Leu. kimchii GJ2 병합투여한 HCD-LKL군과 HCD-LKH군은 HCD군에 비하여 Leu. kimchii GJ2 투여 용량 의존적으로 저하되었다. 지방조직의 HR-LPL과 TE-LPL 활성은 HCD군이 다른 군들에 비하여 증가하였으며, Leu. kimchii GJ2 투여 용량이 증가할수록 HR-LPL과 TE-LPL 활성 모두 유의하게 저하되었다. 이상의 결과 Leu. kimchii GJ2은 고콜레스테롤식이 급여로 증가 되어진 총콜레스테롤 및 LDL-콜레스테롤 함량을 감소시키고, 감소되어진 HDL-콜레스테롤 함량을 증가시킴으로써 혈청 지질을 저하시키며, 간기능 보호효과가 있는 것으로 확인되어 고지혈증 예방과 치료에 효과가 있을 것으로 사료된다. Leu. kimchii GJ2의 이러한 효과는 Leu. kimchii GJ2가 EPS를 생성하여 유산균 본래의 기능인 장 운동 개선효과와 식이섬유소처럼 작용하여 지질의 장내에서의 흡수를 저해했기 때문이라 사료된다.

Keywords

References

  1. Kim, S.J. (2005) Physicochemical characteristics of yogurt prepared with lactic acid bacteria isolated from kimchi. Korean J. Food Culture, 20, 337-340
  2. Lee, S.H. and No, M.J. (1997) Viability in artificial gastric and bile juice and antimicrobial activity of some lactic acid bacteria isolated from kimchi. Kor. J. Appl. Micrbiol. Biotechnol., 25, 617-622
  3. Shida, K., Makino, K., Morishita, A., Takamizawa, K., Hachimura, S., Ametani, A., Sato, T., Kumagai, Y., Habu, S. and Kaminogawas, S. (1998) Lactobacillus casei inhibits antigen-induced IgE secretion through regulation of cytokine production in murine splenocyte culture. Int. Arch. Allergy Immnunol., 115, 278-287 https://doi.org/10.1159/000069458
  4. Jung, H.K., Kim, E.R., Yae, H.S., Choi, S.J., Jung, Y.J. and Juhn, S.L. (2000) Cholesterol-lowering effect of lactic acid bacteria and fermented milks as probiotic functional foods. Food Ind. Nutr., 5, 29-35
  5. Baek, Y.J. (1993) Lactic acid bacteria and human health. Korean J. Food Nutr., 6, 53-65
  6. Kato, I., Endo, K. and Yokokura, T. (1994) Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor resection in mice. Int. J. Immnunopharmacol., 16, 29-36. https://doi.org/10.1016/0192-0561(94)90116-3
  7. Kim, H.S. and Ham, J.S. (2003) Antioxidative ability of lactic acid bacteria. Korean J. Food Sci. Ani. Resour., 23, 186-192
  8. Ahn, Y.T., Bae, J.S., Kim, Y.H., Lim, K.S. and Huh, C.S. (2005) Effects of fermented milk intake on hepatic antioxidative systems in alcohol treated rats. Korean J. Food Sci. Technol., 37, 631-635
  9. Kim, D.J. and Lee, S.Y. (2001) Isolation of exopolysaccharide producing Enterobacter sp. and physiochemical properties of the polysaccharide produced by this strain. Korean J. Biotechnol. Bioeng., 16, 270-375
  10. Kang, H.J., Baick, S.C. and Yu, J.H. (2005) Studies on the properties of the stirred yogurt manufactured by exopolysaccharide producing lactic acid bacteria. Korean J. Food Sci. Ani. Resour., 25, 84-91
  11. Sutherland, I.W. (1998) Novel and established applications of microbial polysaccharide and optimization of its production. Korean J. Biotechnol. Bioeng., 17, 169-175
  12. Kim, H.J. and Chang, H.C. (2006) Isolation and chracterization of exopolysaccharide producing lactic acid bacteria from kimchi. Kor. J. Microbiol. Biotechnol., 34, 196-203
  13. Strory, J.A. and Kritchevsky, D. (1976) Dietary fiber and lipid metabolsim. In fiber in human nutrition, Spiller, G.A. and Amen, R.J. (Ed.) Plenum Press. New York.
  14. Kimmel, S.A., Roberts, R.F. and Zieger, G.R. (1998) Optimization of exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR grown in a semidefined medium. Appl. Environ. Microbiol., 64, 659-664
  15. Cerning, J., Bouilanne, C., Desmazeaud, M. and Landon, M. (1998) Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnol. Lett., 10, 255-260 https://doi.org/10.1007/BF01024415
  16. Eom, H.J., Seo, D.M., Yoon, H.S., Lee, H.B. and Han, N.S. (2002) Strain selection of psychrotrophic Leuconostoc mesenteriods producing a highly active dextransucrase from kimchi. Korean J. Food Sci. Technol., 34, 1085-1090
  17. Kim, B.J., Min, B.H., Kim, J.H. and Han, H.U. (2001) Isolation of dextran-producing Leuconostoc lactis from kimchi. J. Microbiol., 39, 11-16
  18. Oh, C.Y. and Lee, W.K. (2000) Cholesterol lowering effect of lactic acid bacteria isolated from the human intestine. Kor. J. Vet. Publ. Hlth., 24, 181-188
  19. Klaver, F.A.M. and van der Meer, R. (1993) The assimilation of cholesterol by Lactobacillus and Bifidobacterium bifidum is due to their bile salt-deconjugation activity. Appl. Environ. Microbiol., 59, 1120-1124
  20. Park, S.Y., Ko, Y.T., Jeong, H.K., Yang, J.O., Chung, H.S., Kim, Y.B. and Ji, G.E. (1996) Effect of various lactic acid bacteria on the serum cholesterol levels in rats and resistance to acid, bile and antibiotics. Kor. J. Appl. Microbiol. Biotechnol., 24, 304-310
  21. Kim, M.J. and Kim, G.R. (2006) In vitro evaluation of cholesterol reduction by lactic acid bacteria extracted from kimchi. Korean J. Culinary Res., 12, 259-268
  22. Kwon, J.Y., Cheigh, H.S. and Song, Y.O. (2004) Weight reduction and lipid lowering effects of kimchi lactic acid powder in rats fed high fat diets. Korean J. Food Sci. Technol., 36, 1014-1019
  23. Smitinont, T., Tansakul, C., Tanasupawat, S., Keeratipibul, S., Navarini, L., Bosco, M and Cescutti, P. (1999) Exopolysaccharide-producing lactic acid bacteria strains from traditional thai fermented foods: isolation, identification and exopolysaccharide characterization. Int. J. Food Microbiol., 51, 105-111 https://doi.org/10.1016/S0168-1605(99)00094-X
  24. Reeves, P.G., Nielson, F.H. and Fahey Jr, G.C. (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123, 1939-1951
  25. Friedwald, W.T., Levy, R.L. and Fredrickson, D.S. (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 18, 499-502
  26. Eng, L.F. and Noble, E.P. (1957) The maturation of rat brain myelin. Lipids, 3, 157-162 https://doi.org/10.1007/BF02531734
  27. Folch, J., Lees, M. and Sloane-Stanley, G.H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226, 497-509
  28. Zlatkis, A. and Zak, B. (1969) Study of a new cholesterol reagent. Anal. Biochem. 29, 143-148 https://doi.org/10.1016/0003-2697(69)90017-7
  29. Biggs, H.G., Erikson, T.M. and Moorehead, W.R. (1975) A manual colorimetric assay of triglyceride in serum. Clin. Chem., 21, 437-441
  30. Nilsson-Ehle, P. and Schotz, M.C. (1976) A stable radioactive substrate emulsion for assay of lipoprotein lipase. J. Lipid Res., 17, 536-541
  31. Fried, S.K. and Zechner, R. (1989) Cathectin/tumor necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis, and activity. J. Lipid Res., 30, 1917-1923
  32. Iverius, P.H. and Brunzell, J.D. (1985) Human adipose tissue lipoprotein lipase: changes with feeding and relation to postheparin plasma enzyme. Am. J. Physiol., 249, E107-E114
  33. Rhee, S.J. and Park, H.K. (1984) Changes of lipid concentration and histochemical observation in liver of rats fed high fat diet. Korean J. Nutr., 17, 113-125
  34. Yurley, E., Armstrong, N.C., Wallaoe, J.M.W., Gilmore, W.S., Mckelvey-Matin, J.V., Allen, T.M. and Strain, J.J. (1999) Effect of cholesterol feeding on DNA damage in male and female syrian hamsters. Ann. Nutr. Metab., 43, 47-51 https://doi.org/10.1159/000012766
  35. Jung, H.K., Kim, E.R., Yae, H.S., Choi, S.J., Jung, J.Y. and Juhn, S.L. (2000) Cholesterol-lowering effect of lactic acid bacteria and fermented milks as probiotics functional foods. Food Nutr., 16, 29-35
  36. Plaa, G.L. and Charbonneau, M. (1994) Detection and evaluation of chemically induced liver injury. In Principles and Methods of Toxicology. Hayes AW ed., Raven Press. New York. pp. 839-870
  37. Kim, K.H. (1980) A translation: The clinical application of the results of the test. Ko Moon Sa. Seoul. pp. 164-167
  38. Lee, J.J., Kim, J.G., Chung, C.S., Oh, C.Y. and Lee, W.K. (1999) Effect of lactic acid bacteria isolated from human intestine on serum and liver cholesterol concentration and lipoprotein lipase activity in rats fed high-cholesterol diets. Kor. J. Anim. Sci., 41, 655-662
  39. Pulusani, S.R. and Rao, D.R. (1983) Whole body, liver and plasma cholesterol levels in rats fed thermophulus, bulgaricus and acidophilus milks. J. Food Sci., 48, 280-281 https://doi.org/10.1111/j.1365-2621.1983.tb14850.x
  40. Suzuki, Y., Kaizu, H. and Yamauchi, Y. (1991) Effect of cultured milk on serum cholesterol concentration in rats which fed high cholesterol diets. Anim. Sci. Technol., (Japan) 62, 565-571
  41. Nakajima, N., Suzuki, Y., Kaizu, H. and Hirota, T. (1992) Cholesterol lowering activity of ropy fermented milk. J. Food Sci., 57, 1327-1329 https://doi.org/10.1111/j.1365-2621.1992.tb06848.x
  42. Lin, S.Y., Ayres, J.W., Winkler, W. and Sandine, W.E. (1989) Lactobacillus effect on cholesterol: In vitro and in vivo results. J. Dairy Sci., 72, 2885-2899 https://doi.org/10.3168/jds.S0022-0302(89)79439-X
  43. Thompson, L.U., Jenkins, D.J.A., Vic Amer, D.M., Reichert, R. and Kamulsky, A.J. (1982) The effect of fermented and unfermented milks on serum cholesterol. Am. J. Clin. Nutr., 36, 1106-1111 https://doi.org/10.1093/ajcn/36.6.1106
  44. Glliland, S.E. and Walker, D.K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophillus as a dietary adjunct to produce a hypocholesterolmic effect in humans. J. Dairy Sci., 73, 905-911 https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  45. Castelli, W.P., Garrison, R.J., Wilson, P.W.F., Abborr, R.D., Kalousdian, S. and Kannel, W.B. (1986) Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham study. JAMA, 256, 2835-2845 https://doi.org/10.1001/jama.256.20.2835
  46. Rosenfeld, L. (1989) Lipoprotein analysis. Arch. Pathol. Lab. Med., 113, 1101-1110
  47. Kwon, J.Y., Ann, I.S,, Park, K.Y., Cheigh, H.S. and Song, Y.O. (2005) The beneficial effects of pectin on obesity in vitro and in vivo. J. Korean Soc. Food Sci. Nutr., 34, 13-20 https://doi.org/10.3746/jkfn.2005.34.1.013
  48. O'Brien, K.D., Gordon, D., Deeb, S., Ferguson, M. and Chait, A. (1992) Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques. J. Clin. Invest., 89, 1544-1550 https://doi.org/10.1172/JCI115747
  49. Semenkovich, C.F., Coleman, T. and Daugherty, A. (1998) Effects of heterozygous lipoprotein lipase deficiency on diet-induced atherosclerosis in mice. J. Lipid Res., 39, 1141-1151
  50. Lee, J.J., Chung, C.S., Kim, J.G. and Choi, B.D. (2000) Effect of fasting refeeding on rat adipose tissue lipoprotein lipase activity and lipogenesis: Influence of food restriction during refeeding. J. Korean Soc. Food Sci. Nutr., 29, 471-478