Antioxidant Activity and Inhibition of MMP-9 by Isorhamnetin and Quercetin 3-O-$\beta$-D-Glucopyranosides Isolated from Salicornia herbacea in HT1080 Cells

  • Kong, Chang-Suk (Research Institute of Marine Science and Technology, Korea Maritime University) ;
  • Kim, You-Ah (Division of Marine Environment and Bioscience, Korea Maritime University) ;
  • Kim, Moon-Moo (Department of Chemistry, Dong-Eui University) ;
  • Park, Jin-Sook (Department of Chemistry, Pukyong National University) ;
  • Kim, Se-Kwon (Department of Chemistry, Pukyong National University) ;
  • Lee, Burm-Jong (Department of Chemistry, Inje University) ;
  • Nam, Taek-Jeong (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Seo, Young-Wan (Division of Marine Environment and Bioscience, Korea Maritime University)
  • Published : 2008.10.31

Abstract

Two flavonoids, isorhamnetin 3-O-$\beta$-D-glucopyranoside (1) and quercetin 3-O-$\beta$-D-glucopyranoside (2), from slander glasswort (Salicornia herbacea, Korean name hamcho) were isolated. Antioxidative and matrix metalloproteinase-9(MMP-9) inhibitory effects of these compounds were investigated in HT 1080 cell lines. These compounds suppressed the electron spin resonance (ESR) signal intensity on generation of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in a free-cellular system. Their scavenging effects on generation of intercellular reactive oxygen species (ROS) also exhibited similar trends with DPPH radical in the free cellular system. Also, a control group combined only with Fe(II)-$H_{2}O_2$ resulted in DNA apoptosis by oxidative stress, whereas treatments with these compounds suppressed radical-mediated DNA damage. Intracellular glutathione (GSH) levels were slightly increased in the presence of compound 1 and 2. Moreover, these compounds led to the reduction of the expression levels of MMP-9 without cytotoxic influence. These results suggest that these compounds have a potential as a valuable natural antioxidant and MMP inhibitor related to oxidative stress. Therefore, these compounds not only can be developed as a candidate for a therapeutic potential but also a source for use as ingredients of health foods or functional foods to prevent metastasis involving MMP-9, closely related to ROS.

Keywords

References

  1. Dawson TM, Snyder SH. Gases as biological messengers: Nitric oxide and carbon monoxide in the brain. J. Neurosci. 14: 5147-5159 (1994) https://doi.org/10.1523/JNEUROSCI.14-09-05147.1994
  2. Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Vina-Ribes J. Functional food science and defence against reactive oxidative species. Brit. J. Nutr. 80: S77-S112 (1998) https://doi.org/10.1079/BJN19980106
  3. Ichinose M. Inflammatory mechanisms in bronchial asthma and COPD. Tohuku J. Exp. Med. 200: 1-6 (2003) https://doi.org/10.1620/tjem.200.1
  4. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro: Implications for atherosclerotic plaque stability. J. Clin. Invest. 98: 2572-2579 (1996) https://doi.org/10.1172/JCI119076
  5. Kohn EC, Jacobs W, Kim YS, Alessandro R, Stetler-Stevenson WG, Liotta LA. Calcium influx modulates expression of matrix metalloproteinase-2 (72 kDa type IV collagenase, gelatinase A). J. Biol. Chem. 269: 21505-21511 (1994)
  6. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J. Biol. Chem. 274: 21491-21494 (1999) https://doi.org/10.1074/jbc.274.31.21491
  7. McCawley LJ, Matrisian LM. Matrix metalloproteinases: Multifunctional contributors to tumor progression. Mol. Med. Today 6: 149-156 (2000) https://doi.org/10.1016/S1357-4310(00)01686-5
  8. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: Structure, regulation, and biological functions. Eur. J. Cell Biol. 74: 111-122 (1997)
  9. Kupferman ME, Fini ME, Muller WJ, Weber R, Cheng Y, Muschel RJ. Matrix Metalloproteinase 9 promoter activity is induced coincident with invasion during tumor progression. Am. J. Pathol. 157: 1777-1783 (2000) https://doi.org/10.1016/S0002-9440(10)64815-8
  10. Hwang JH, Choi SY, Ko HC, Jang MG, Jin YJ, Kang SI, Park JG, Chung WS, Kim SJ. Anti-inflammatory effect of the hot water extract from Sasa quelpaetensis leaves. Food Sci. Biotechnol. 16: 728-733 (2007)
  11. Rice-Evans CA, Miller NJ, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152-159 (1997) https://doi.org/10.1016/S1360-1385(97)01018-2
  12. Han SK, Kim SM, Pyo BS. Antioxidative effect of glasswort (Salicornia herbacea L.) on the lipid oxidation of pork. Korean J. Food Sci. Ani. Resour. 23: 46-49 (2003)
  13. Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31: 149-190 (1980) https://doi.org/10.1146/annurev.pp.31.060180.001053
  14. Han SK, Kim SM. Antioxidative effect of Salicornia herbacea L. grown in closed sea beach. J. Korean Soc. Food Sci. Nutr. 32: 207-210 (2003) https://doi.org/10.3746/jkfn.2003.32.2.207
  15. Oh JH, Kim EO, Lee SK, Woo MH, Choi SW. Antioxidant activities of the ethanol extract of hamcho (Salicornia herbacea) cake prepared by enzymatic treatment. Food Sci. Biotechnol. 16: 873-878 (2007)
  16. Seo Y, Lee HJ, Kim YA, Park KE. Antioxidative effect of glasswort (Saliconia herbacea) extract from Daebudo. Proc. Curr. Biotech. Bioengin. 10: 1-7 (2004)
  17. Lee KS, LeeMH, Chang IY, Yoon SP, Lim DY, Jeon YJ. Marcrophage activation by polysaccharide fraction isolated from Salicornia herbacea. J. Ethnopharmacol. 103: 372-378 (2006) https://doi.org/10.1016/j.jep.2005.08.037
  18. Park SH, Kim KS. Isolation and identification of antioxidant flavonoids from Salicornia herbacea L. J. Korean Soc. Appl. Biol. Chem. 47: 120-123 (2004)
  19. ChungYC, Chun HK, Yang JY, Kim JY, Han EH, Kho YH, Jeong HG. Tungtungmadic acid, a novel antioxidant, from Salicornia herbacea. Arch. Pharm. Res. 28: 1122-1126 (2005) https://doi.org/10.1007/BF02972972
  20. Nanjo F, Goto K, Seto R, Susuki M, Sakai M, Hara Y. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radical Bio. Med. 21: 895-902 (1996) https://doi.org/10.1016/0891-5849(96)00237-7
  21. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119: 203-210 (1989) https://doi.org/10.1016/0022-1759(89)90397-9
  22. Okimotoa Y, Watanabea A, Nikia E, Yamashitab T, Noguchia N. A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474: 137-140 (2000) https://doi.org/10.1016/S0014-5793(00)01587-8
  23. Sambrook J, Russell D. Molecular Clonning a Laboratory Manual. Sambrook J, Russel D (eds). CPHL Press, Cold Spring Harbor, NY, USA (2001)
  24. Milne L, Nicotera P, Orrenius S, Burkitt M. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Prooxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304: 102-109 (1993) https://doi.org/10.1006/abbi.1993.1327
  25. Poot M, Verkerk A, Koster JF, Jongkind JF. De novo synthesis of glutathione in human fibroblasts during in vitro ageing and in some metabolic diseases as measured by a flow cytometric method. Biochim. Biophys. Acta 883: 580-584 (1986) https://doi.org/10.1016/0304-4165(86)90300-4
  26. Hrabec E, Strek M, Nowak D, Greger J, Suwalski M, Hrabec Z. Activity of type IV collagenases (MMP-2 and MMP-9) in primary pulmonary carcinomas: A quantitative analysis. J. Cancer Res. Clin. 128: 197-204 (2002) https://doi.org/10.1007/s00432-001-0320-3
  27. Nasr-Esfahani M, Johnson MH. The origin of the reactive oxygen species in mouse embryos cultured in vitro. Development 113: 551-560 (1991)
  28. Mello LD, Hernandez S, Marrazza G, Mascini M, Kubota LT. Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor. Biosens. Bioelectron. 21: 1374-1382 (2006) https://doi.org/10.1016/j.bios.2005.05.012
  29. Sanchez-Reus MI, Peinado II, Molina-Jimenez MF, Benedi J. Flaxetin prevents rotenone-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Neurosci. Res. 53: 48-56 (2005) https://doi.org/10.1016/j.neures.2005.05.009
  30. Grimm T, Schafer A, Hogger P. Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (pycnogenol). Free Radical Bio. Med. 36: 811-822 (2004) https://doi.org/10.1016/j.freeradbiomed.2003.12.017
  31. Yoo HG, Shin BA, Park JS, Lee KH, Chay KO, Yang SY, Ahn BW, Jung YD. IL-1beta induces MMP-9 via reactive oxygen species and NF-kappa B in murine macrophage RAW 264.7 cells. Biochem. Bioph. Res. Co. 298: 251-256 (2002) https://doi.org/10.1016/S0006-291X(02)02431-2
  32. Yesilada E, Tsuchiya K, Takaishi Y, Kawazoe K. Isolation and characterization of free radical scavenging flavonoid glycosides from the flowers of Spartium junceum by activity guided fractionation. J. Ethnopharmacol. 73: 471-478 (2000) https://doi.org/10.1016/S0378-8741(00)00327-5