Inhibitory Effect of Bacillus subtilis Y3-7 Culture Broth on $\alpha$-Glucosidase Activity

Bacillus subtilis Y3-7 배양액의 $\alpha$-glucosidase 활성 억제 효과

  • 명길선 ((주)한국야쿠르트 중앙연구소) ;
  • 허건 ((주)한국야쿠르트 중앙연구소) ;
  • 윤석영 ((주)한국야쿠르트 중앙연구소) ;
  • 심재중 ((주)한국야쿠르트 중앙연구소) ;
  • 이정희 ((주)한국야쿠르트 중앙연구소) ;
  • 임광세 ((주)한국야쿠르트 중앙연구소) ;
  • 허철성 ((주)한국야쿠르트 중앙연구소)
  • Published : 2008.10.31

Abstract

Culture broth of Bacillus subtilis Y3-7 in tryptic soy broth (TSB) isolated from Korean traditional fermented food was evaluated for the inhibition of $\alpha$-glucosidase. The results of in vitro studies using the yeast $\alpha$-glucosidase demonstrated that the culture broth exerted inhibitory effects on $\alpha$-glucosidase with $IC_{50}$ value of 1.62 mg/mL, and functioned as a competitive inhibitor. Furthermore, the culture broth of B. subtilis Y3-7 significantly improved glucose tolerance in normal and streptozotocin-induced diabetic mice. The blood glucose levels in the mice receiving sucrose supplementation in the culture broth (1 g/kg, 2 g/kg) were measured at 48.7%, which corresponded to 22.2% of the levels measured in the control mice. These results indicated that the culture broth of B. subtilis Y3-7 in TSB might be considered as a useful compound for the preparation of functional foods for diabetic patients.

본 연구에서는 전통 발효 식품에서 분리한 B. subtilis Y3-7 균주의 배양액이 $\alpha$-glucosidase의 활성에 미치는 영향을 살펴보았다. B. subtilis Y3-7 균주를 TSB 배지에 30시간 이상 배양한 배양액은 1.62 mg/mL의 농도로 yeast $\alpha$-glucosidase의 활성을 50%까지 저해할 수 있었다. 또한 효소학적 분석을 통해 이것이 배양액 내 물질이 효소의 기질과 경쟁적으로 작용하여 억제효과가 나타남을 확인하였다. B. subtilis Y3-7 균주의 배양액은 yeast 뿐만 아니라 실험동물의 장내 $\alpha$-glucosidase의 활성에도 영향을 미쳐 당부하에 따른 급격한 혈당상승을 억제할 수 있었다. 이와 같은 결과로 보아 대량배양이 가능한 B. subtilis Y3-7을 통해 탄수화물 흡수에 중요한 역할을 하는 $\alpha$-glucosidase 활성억제 물질을 얻음으로써 항당뇨 물질의 안정적인 생산이 기대되는 바이다.

Keywords

References

  1. DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 5: 177-269 (1997)
  2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047-1053 (2004) https://doi.org/10.2337/diacare.27.5.1047
  3. Bertozzi CR, Kiessling LL. Chemical glycobiology. Science 23: 2357-2364 (2001)
  4. Bell DS. Type 2 diabetes mellitus: What is the optimal treatment regimen? Am. J. Med. 116: 23S-29S (2004) https://doi.org/10.1016/j.amjmed.2003.10.017
  5. Lebovitz HE. Alpha-glucosidase inhibitors. Endocrin. Metab. Clin. 26: 539-551 (1997) https://doi.org/10.1016/S0889-8529(05)70266-8
  6. de Melo EB, da Silveira Gomes A, Carvalho I. $\alpha $- and $\beta$-glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron 62: 10277-10302 (2006) https://doi.org/10.1016/j.tet.2006.08.055
  7. Schmidit DD, Frommer W, Junge B, Muller L, Wingender W, Truscheit E, Schafer D. Alpha-glucosidase inhibitors. New compelx oligosaccharides of microbial origin. Naturwissenschaften 64: 535-536 (1977) https://doi.org/10.1007/BF00483561
  8. Asano N, Tomioka E, Kizu H, Matsui K. Sugars with nitrogen in the ring isolated from the leaves of Morus bombycis. Carbohydr. Res. 253: 235-245 (1994) https://doi.org/10.1016/0008-6215(94)80068-5
  9. Lee DS, Lee SH. Genistein, a soy isoflavone, is a potent alphaglucosidase inhibitor. FEBS Lett. 501: 84-86 (2001) https://doi.org/10.1016/S0014-5793(01)02631-X
  10. Chen J, Cheng YQ, Yamaki K. Li LT. Anti-$\alpha$-glucosidase activity of Chinese traditionally fermented soybean (douchi). Food Chem. 103: 1091-1096 (2007) https://doi.org/10.1016/j.foodchem.2006.10.003
  11. Zhu YP, Yin LJ, Cheng YQ, Yamaki K, Yutaka M, Su YC, Li LT. Effect of sources of carbon and nitrogen on production of $\alpha$- glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. Food Chem. 109: 737-742 (2008) https://doi.org/10.1016/j.foodchem.2008.01.006
  12. Watanabe J, Kawabata J, Kurihara H, Niki R. Isolation and identification of alpha-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci. Biotech. Biochem. 61: 177-178 (1997) https://doi.org/10.1271/bbb.61.177
  13. Kasai N, Murata A, Inui H, Sakamoto T, Kahn RI. Enzymatic high digestion of soybean milk residue (okara). J. Agr. Food Chem. 52: 5709-5716 (2004) https://doi.org/10.1021/jf035067v
  14. Ma CY, Liu WS, Kwok KC, Kwok F. Isolation and characterization of proteins from soymilk residue (okara).Food Res. Int . 29: 799-805 (1997)
  15. Schafer A. Hogger P. Oligomeric procyanidins of French maritime pine bark extract (Pycnogenol) effectively inhibit alpha-glucosidase. Diabetes Res. Clin. Pr. 77: 41-46 (2007) https://doi.org/10.1016/j.diabres.2006.10.011