An ab Initio Predictive Study on Solvent Polarity

용매 극성도의 이론적 예측 연구

  • Published : 2008.06.30

Abstract

We investigated molecular polarity by using theoretical means and comparing empirical solvent polarity. Our approach employed electrostatic potentials at the molecular surface calculated by density functional methods. A number of molecular descriptors related to molecular polarities were computed from molecular surface electrostatic potentials. Among computed molecular descriptors, the most positive electrostatic potential provided the best correlation with the empirical solvent polarities. A regression equation was developed in order to predict molecular polarities of molecules whose experimental solvent polarities were unknown. The new regression equations were utilized in estimating solvent polarities of cubane derivatives which are considered important precusors of high-energy density meterials.

Keywords

References

  1. Marcus, Y. The Properties of Solvents, John Wiley & Sons, Chichester, 1999
  2. Lide, D. R., Kehiaian, H. V., CRC Handbook of Thermophysical and Thermochemical Data, CRC Press, Boca Raton, 1994
  3. Reichardt, C., Solvents and Solvent Effects in Organic Chemistry, 2nd Ed., VCH, Weinheim, 1988
  4. Hehre, W. J., Radom, L., Schleyer, P. v. R., Pople, J. A., Ab Initio Molecular Orbital Theory, John Wiley & Sons, New York, 1986
  5. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004
  6. Politzer, P., Truhlar, D. G., Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York, 1988
  7. Kim, C. K., Lee, K. A., Hyun, K. H., Park, H. J., Kwack, I. Y., Kim, C. K., Lee, H. W., Lee, B.-S., 'Prediction of Physicochemical Properties of Organics Molecules Using van der Waals Surface Electrostatic Potentials', J. Comput. Chem., 25, pp. 2073-2079, 2004 https://doi.org/10.1002/jcc.20129
  8. Eaton, P. E., Gilardi, R. L., Zhang, M.-Xi., 'Polynitrocubanes : Advanced High-Density High-Energy Materials', Adv. Mater., 12, pp. 1143-1148, 2000 https://doi.org/10.1002/1521-4095(200008)12:15<1143::AID-ADMA1143>3.0.CO;2-5
  9. Eaton, P. E., 'Cubane : Starting Materials for the Chemistry of the 1990s and the New Century', Angew. Chem. Int. Ed. Engl., 31, pp. 1421-1436, 1992 https://doi.org/10.1002/anie.199214211
  10. Griffin, G. W., Marchand, A. P., 'Synthesis and Chemistry of Cubanes', Chem. Rev., 89, pp. 997-1010, 1989 https://doi.org/10.1021/cr00095a003