DOI QR코드

DOI QR Code

Quality Properties of the Refrigerated or Frozen Irradiated Beef Patty

방사선조사된 패티용 분쇄우육의 가열전 품질특성

  • Published : 2008.10.31

Abstract

Microbial reduction, physicochemical property, and sensory evaluation of irradiated beef patty were investigated. The microbial counts of refrigerated beef patty were reduced to below the number of 3 logs after irradiation at 3 kGy. But no viable microorganism was detected in frozen beef patty irradiated at 3 kGy. Food additives such as nitrite, salt, phosphate and ascorbic acid did not affect on the inactivation of microorganism by irradiation. The irradiation effect on the water holding capacity was not significant, but frozen irradiated beef patty showed higher water holding capacity than refrigerated beef patty. The drip loss of irradiated beef patty did not show significant differences according to irradiation doses. Considering the influence of food additives, the irradiated beef patty mixed with salt and phosphate showed lower drip loss than that without food additives. In refrigerated beef patty, TBARS values were increased with increase of irradiation doses and showed lower values in the beer patty mixed with food additives than that without food additives. The redness of refrigerated beef patty showed highest values at 3 kGy of irradiation and then decreased with increasing irradiation doses, while in the frozen beef patty did not show distinct tendency according to the irradiation doses or food additives. In sensory evaluation, the irradiated beef patty showed unpleasant smell as compared with the non irradiated beef patty, but showed some-what higher score in smell at the sample contained ascorbic acid regardless of irradiation doses.

본 연구에서는 단체급식이나 외식용으로 주로 사용하고 있으나 미생물 오염에 쉽게 노출될 수 있는 패티용 분쇄우육에 방사선조사기술을 적용하였을 때 나타나는 미생물 감균효과, 품질특성 및 관능품위에 미치는 영향을 살펴보았다. 방사선조사 직후의 냉장육 초기 미생물은 식품첨가물에 관계없이 $10^5$ CFU/g수준이었으나 3 kGy 선량의 방사선조사에 의하여 $10^2-10^3$ CFU/g 수준으로 감균되었으며, 7 kGy에서는 미생물이 검출되지 않았다. 반면에 $-20^{\circ}C$에서 90일 저장한 냉동육의 미생물은 $10^3-10^4$ CFU/g 수준으로 낮아졌고 3 kGy이상의 조사선량에서 미생물이 검출되지 않았다. 분쇄우육 제조시 가공적성 또는 맛을 개선하기 위하여 사용되는 아질산염, 소금, 인산염 및 아스콜빈산과 같은 식품첨가물은 미생물의 방사선 감수성에 큰 영향을 주지 않는 것으로 나타났다. 분쇄우육의 보수력에 미치는 방사선조사의 영향은 크지 않았으며, 방사선조사와 관계없이 냉장육에 비하여 냉동육의 보수력이 높았는데 pH 변화와 관계가 있는 것으로 생각되었다. 해동감량에 미치는 방사선조사의 영향은 보수력과 마찬가지로 방사선조사선량에 따라 유의적 차이를 나타내지 않았으나 소금과 인산염이 첨가된 시료구에서는 해동감량이 적게 나타났다. 냉장육의 경우 방사선조사선량이 증가할수록 TBARS값이 증가하는 경향을 보였으나 첨가물이 함유된 시료구는 대조구보다 낮은 TBARS 값을 보였고, 냉동육은 냉동변성에 의한 육질의 물리적 특성 변화가 TBARS 간에 일부 영향을 미치는 것으로 예상되었다. 적색도는 냉장육 대조구의 경우 방사선조사에 의하여 약간 증가하는 경향을 보였으나 식품첨가물이 첨가된 시료구에서는 3 kGy에서 가장 높은 적색도를 보인 이후 7 kGy 이상에서 감소하는 경향을 보였다. 그러나 냉동육은 방사선조사 및 식품첨가물의 영향에 따른 뚜렷한 경향을 찾을 수 없었다. 한편, 냄새 및 색깔에 대한 관능특성을 보면 방사선조사에 의하여 불쾌취가 높았으나 이러한 불쾌취는 아스콜빈산 첨가에 의하여 일정부분 상쇄되는 것으로 나타났다. 색깔의 경우 전반적으로 시료구에 관계없이 3 kGy 방사선조사에서 관능적으로 양호하였으며 이는 적색도와 유사한 결과를 보였다. 특히, 아스콜빈산이 함유된 시료구에서 색깔 및 냄새에 대하여 양호한 점수가 나온 결과에서 방사선조사된 고기의 냄새와 색깔에 미치는 아스콜빈산의 영향에 대한 추가 연구가 필요할 것으로 생각되었다.

Keywords

References

  1. Ahn, D. U., Jo, C., Du, M., Olson, D. G., and Nam, K. C. (2000) Quality characteristics of pork patties irradiated and stored in different packaging and storage conditions. Meat Sci. 56, 203-209 https://doi.org/10.1016/S0309-1740(00)00044-9
  2. Ahn, D. U., Jo, C., and Olson, D. G. (2000) Analysis of volatile components and the sensory characteristics of irradiate raw pork. Meat Sci. 54, 209-215 https://doi.org/10.1016/S0309-1740(99)00081-9
  3. Ahn, D. U., Olson, D. G., Jo, C., Chen, X., Wu, C., and Lee, J. I. (1998) Effect of muscle type, packaging, and irradiation on lipid oxidation, volatile production, and color in raw pork patties. Meat Sci. 47(1), 27-39
  4. Ahn, D. U., Olson, D. G., Jo, C., Love, J., and Jin, S. K. (1999) Volatile production and lipid oxidation in irradiated cooked sausage as related to packaging and storage. J. Food Sci. 64, 226-229 https://doi.org/10.1111/j.1365-2621.1999.tb15870.x
  5. Ang, C. Y. W., and Lyon, B. G. (1990) Evaluation of warmedover flavor during chill storage of cooked broiler breast, thigh and skin by chemical, instrumental and sensory methods. J. Food Sci. 55, 644-648, 673 https://doi.org/10.1111/j.1365-2621.1990.tb05197.x
  6. Blixt, Y. and Borch, E. (1999) Using an electronic nose for determining the spoilage of vacuum-packaged beef. Int. J. Food Microbiol. 46, 123-134 https://doi.org/10.1016/S0168-1605(98)00192-5
  7. Braggins, T., Frost, D. A., Agnew, M. P., and Farouk, M. (1999) Evaluation of an electronic nose for use in the meat industry. In: Electronic Nose and Sensor Array Based Systems. Hurst, W. J. (ed), Technomic Publishing Co. Inc. Lancaster, PA, USA, pp. 51-82
  8. Bruce, A. K. (1964) Extraction of the radioresistant factor of Micrococcus radiodurans. Radiot. Res. 22, 155 https://doi.org/10.2307/3571706
  9. Buege, J. A. and Aust, S. D. (1978) Microsomal lipid peroxidation. Method Enzymol. 52, 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  10. Dickson, J. S. and Maxcy, R. B. (1985) Irradiation of meat for the production of fermented sausage. J. Food Sci. 50, 1007-1009 https://doi.org/10.1111/j.1365-2621.1985.tb12999.x
  11. FDA (1986) Irradiation in the production, processing and handling of food. Food and Drug Administration. Fed. Reg. 51, 13376-13379
  12. Hampson, J. W., Fox, Jr. J. B., Lakritz, L., and Thayer, D. W. (1996) Effect of low dose gamma radiation on lipids in five different meats. Meat Sci. 42, 271-276 https://doi.org/10.1016/0309-1740(95)00047-X
  13. Kim, Y. H., Nam, K. C., and Ahn, D. U. (2002) Volatile profiles, lipid oxidation and sensory characteristics of irradiated meat from different animal species. Meat Sci. 61, 257-265 https://doi.org/10.1016/S0309-1740(01)00191-7
  14. Kim, Y. H., Nam, K. C., and Ahn, D. U. (2002) Color, oxidation- reduction potential, and gas production of irradiated meats from different animal species. J. Food Sci. 67, 1692-1695 https://doi.org/10.1111/j.1365-2621.2002.tb08707.x
  15. Kwak, H. J. and Kang, L. J. (2000) Irradiation of Korean beef for the improvement of hygienics and quality preservation. Korean J. Food Sci. Technol. 32, 363-372
  16. Lefebvre, N., Thibault, C., and Charbonneau, R. (1992) Improvement of shelf- life and wholesomeness of ground beef by irradiation. 1. Microbial aspects. Meat Sci. 32, 203-213 https://doi.org/10.1016/0309-1740(92)90107-F
  17. Mattison, M. L., Kraft, A. A., Olson, D. G., Walker, M. W., Rust, R. E., and James, D. D. (1986) Effect of low dose irradiation of pork loins on the microflora, sensory characteristics and fat stability. J. Food Sci. 51, 284-287 https://doi.org/10.1111/j.1365-2621.1986.tb11110.x
  18. Miller, S. J., Moss, B. W., MacDougall, D. B., and Stevenson, M. H. (1995) The effect of ionizing radiation on the CIE Lab color co-ordinates of chicken breast meat as measured by different instruments. Int. J. Food Sci Technol. 30, 663-674 https://doi.org/10.1111/j.1365-2621.1995.tb01413.x
  19. Nam, K. C. and Ahn, D. U. (2002) Carbon monoxide-heme pigment complexes re responsible for the pink color in irradiated raw turkey brest meat. Meat Sci. 60, 25-33 https://doi.org/10.1016/S0309-1740(01)00101-2
  20. Nanke, K. E., Sebranek, J. G., and Olson, D. G. (1998) Color characteristics of irradiated vacuum-packaged pork, beef, and turkey. J. Food Sci. 63, 1001-1006 https://doi.org/10.1111/j.1365-2621.1998.tb15842.x
  21. Patterson, R. L. S. and Stevenson, M. H. (1995) Irradiationinduced off-odor in chicken and its possible control. British Poul. Sci. 36, 425-441 https://doi.org/10.1080/00071669508417789
  22. Salih, A. M., Smith, D. M., Price, JR., and Dawson, L. E. (1987) Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poultry Sci. 66, 1483-1488 https://doi.org/10.3382/ps.0661483
  23. Shahidi, F. and Pegg, R. B. (1994) Hexanal as an indicator of meat flavor deterioration. J. Food Lipids 1, 177-186 https://doi.org/10.1111/j.1745-4522.1994.tb00245.x
  24. Sweet, D. M. and Moseley, B. E. B. (1976) The resistance of Micrococcus radiodurans to killing and mutation by agents which damage DNA. Mutat. Res. 34, 175 https://doi.org/10.1016/0027-5107(76)90122-6
  25. Thayer, D. W., Boyd, G., and Jenkins, R. K. (1993) Low dose gamma irradiation and refrigerated storage in vacuo affect microbial flora of fresh pork. J. Food Sci. 58, 717-719, 733 https://doi.org/10.1111/j.1365-2621.1993.tb09342.x
  26. WHO (1981) Wholesomeness of irradiated food. Report of a joint FAO/IAEA/WHO Expert Committee. Tech. Rep. 651. World Heath Organization. Geneva
  27. WHO (1992) Review of the safety and nutritional adequacy of irradiated food. WHO/HPP/FOS/92.2
  28. Yook, H. S., Kim, S., Lee, K. H., Kim, Y. J., Kim, J. O., and Byun, M. W. (1999) Radurization of the microorganism contaminated in beef. Korean J. Food Sci. Technol. l31, 212-218
  29. 강창기, 박구부, 성삼경, 이무하, 이영현, 정명섭, 최양일. (1992) 식육생산과 가공의 과학. 선진문화사, pp. 113-350
  30. 김병철, 박구부, 성삼경, 이무하, 이성기, 정명성, 주선태, 최양일. (1998) 근육식품의 과학. 선진문화사, pp. 93-164
  31. 변명우, 김동호, 육홍선, 안현주. (2000) 식품과학과 산업. 식품미생물의 방사선 살균. 33, 58-70

Cited by

  1. Reducing Effect of Microorganism on Meat and Fish Products by Repeated γ-Irradiation at Low Dose vol.30, pp.1, 2015, https://doi.org/10.13103/JFHS.2015.30.1.92
  2. Quality Evaluation and Physical Identification of Irradiated Dried Fruits vol.41, pp.11, 2012, https://doi.org/10.3746/jkfn.2012.41.11.1559