Prediction Model of the Sound Transmission Loss of Honeycomb Panels for Railway Vehicles

철도차량용 허니콤재의 차음성능 예측모델

  • 김석현 (강원대학교 기계메카트로닉스 공학부) ;
  • 백인수 (강원대학교 기계메카트로닉스 공학부) ;
  • 이현우 (강원대학교 기계메카트로닉스) ;
  • 김정태 (홍익대학교 기계공학과)
  • Published : 2008.10.30

Abstract

Sound transmission characteristics are investigated on the honeycomb panels used for railway vehicles. Equivalent orthotropic plate model and equivalent mass law are applied to predict the sound transmission loss (STL) of the honeycomb panels. The predicted values of the STL are compared with the measured values. The reliability and the limitation of the prediction models are investigated. Coincidence effect and local resonance effect on STL are considered. The result of the study shows that the equivalent orthotropic plate model can be used as a good prediction model, if the local resonance frequency is properly applied. finally, ways to improve the severe STL drop by local resonance are proposed and the effect on the sound insulation performance is analysed.

본 논문에서는 철도 차량용 허니콤 판재를 대상으로 음투과 손실을 검토한다. 허니콤재의 음투과 손실을 예측하는 데에는 등가 직방성 평판 모델과 등가 질량법칙을 적용한다. 음투과 손실의 예측치를 측정치와 비교하여 예측 모델의 신뢰도와 한계를 검토한다. 또한 일치효과와 국부공진 효과가 차음성능에 미치는 효과를 검토한다. 본 연구는 국부공진 주파수대역을 적절히 적용한다면, 등가 직방성 평판 모델을 허니콤재의 음투과손실 예측모델로 사용 할 수 있음을 보인다. 최종적으로, 국부 공진에 의한 차응성능의 급격한 저하에 대한 대책을 제시하고 그 차음 성능에 대한 효과를 분석한다.

Keywords

References

  1. Heckl, M. (1960), "Untersuchungen an Orthotropen Platten", ACUSTICA, Vol. 10, pp.109-115
  2. Bies, D. A. and Hansen, C. H. (1988), Engineering Noise Control. Unwin Hyman Ltd, London
  3. Alexander, N. J. H. (1988), "Measurement of Sound Absorption and Transmission of Corrugated Steel Plates," Proceedings of the Institute of Acoustics, Vol. 10, No. 3, pp.39-50
  4. Rowell, M.A. and Oldham, D. J. (1988), "The Directivity of Orthotropic Factory Cladding Panels", Proceedings of the Institute of Acoustics, Vol.10, No. 5, pp.39-50
  5. Cordonnier-Cloarec, P. et al. (1992), "Contribution to the Study of Sound Transmission and Radiation of Corrugated Steel Structures", Journal of Sound and Vibration, Vol. 157, pp.515-530 https://doi.org/10.1016/0022-460X(92)90530-B
  6. Hansen, C. H. (1993), "Sound Transmission of Corrugated Panels", Noise Control Engineering Journal, Vol. 40, pp.187-197 https://doi.org/10.3397/1.2827834
  7. Windle, R. M. and Lam, Y. W. (1993), "Prediction of the Sound Reduction of Profiled Metal Cladding. Inter-Noise'93", Vol. 2, pp.999-1002
  8. Ng, C. F. and Zheng, H. (1998), "Sound Transmission through Double-leaf Corrugated Panel Construction", Applied Acoustics, Vol. 53, No.1-3, pp.15-34 https://doi.org/10.1016/S0003-682X(97)00043-1
  9. Kim, S.H., Jang, H. and Kim,J. (2001), "Characteristics of Local Vibration Modes of the Aluminium Extruded Panels for Rail Road Vehicles", Journal of the Korean Society for Railway, Vol. 4(3), pp.87-93
  10. Kim, S.H., Park, J.C. and Kim, J. N. (2000), "Sound Transmission Loss of Aluminium Extruded Panels for Railway Vehicles", Transactions of KSNVE, Vol.10(4), pp.662-668
  11. Cremer, L., Heckl, M. and Ungar, E.E. (1988), Structure-Borne Sound, 2nd ed., Springer-Verlag, Berlin
  12. L.L.Beranek, (1960), Noise Reduction, McGraw-Hill Book Company
  13. Luo, S. and Suhling, J. C. and Laufeberg, T.L. (1995), "Bending and Twisting Tests for Measurement of the Stiffness of Corrugated Board", ASME AMD-Vol. 209, pp.91-109
  14. Kim,W., Kim, J., Kim, G, and Kim, S.H. (2003), "A Study on the Transmission Loss Characteristics of Honeycomb Structures", Transactions of KSNVE, Vol.13, No. 1, pp.19-25 https://doi.org/10.5050/KSNVN.2003.13.1.019
  15. ASTM E90-02; Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements