DOI QR코드

DOI QR Code

Synthesis and Characterization of Yttrium-doped Core-Shell SiO2 Nanoparticles by Reverse Micelle and Sol-gel Processing

  • Kim, Jun-Seop (School of Nano & Advanced Material Engineering, College of Engineering, Changwon National University) ;
  • Chu, Min-Cheol (Korea Research Institute of Standard and Science) ;
  • Cho, Seong-Jai (Korea Research Institute of Standard and Science) ;
  • Bae, Dong-Sik (School of Nano & Advanced Material Engineering, College of Engineering, Changwon National University)
  • Published : 2008.09.30

Abstract

In this study, yttrium-doped $SiO_2$ nanoparticles are synthesized using a reverse micelle technique combined with metal alkoxide hydrolysis and condensation. Spherical Y-doped $SiO_2$ nanoparticles with a uniform size distribution are prepared using selfassembly molecules in conjunction with the hydrolysis and condensation of organometallic precursors. The water/surfactant molar ratio influenced the Y-doped $SiO_2$ particles distribution of the core-shell composite particles and the distribution of Y doped $SiO_2$ particles was broadened as the water to surfactant ratio increased. The particle size of Y increase linearly as the $Y(NO_3)_3$ solution concentration increased. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The effects of synthesis parameters, such as the molar ratio of water to surfactant and the molar ratio of water to TEOS, are discussed.

Keywords

References

  1. G.M. Schmid, "Large Clusters and Colloids, and Metals in the Embryonic State," Chem. Rev., 92 1709-27 (1992) https://doi.org/10.1021/cr00016a002
  2. J. Le. Bars, U. Specht, J.S. Bradley, and D. G. Blackmond, "A Catalytic Probe of the Surface of Colloidal Palladium Particles Using Heck Coupling Reactions," Langmuir, 15 7621-25 (1999) https://doi.org/10.1021/la990144v
  3. Y. Li, X.M. Hong, D.M. Collard, and M.A. El-Sayed, "Suzuki Cross-Coupling Reactions Catalyzed by Palladium Nanoparticles in Aqueous Solution," Org. Lett., 2 2385-88 (2000) https://doi.org/10.1021/ol0061687
  4. Y. Li and M.A. El-Sayed, "The Effect of Stabilizers on the Catalytic Activity and Stability of Pd Colloidal Nanoparticles in the Suzuki Reactions in Aqueous Solution," J. Phys. Chem. B, 105 8938-43 (2001) https://doi.org/10.1021/jp010904m
  5. J. Dai and M.L. Bruening, "Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films," Nano Lett., 2 497-501 (2002) https://doi.org/10.1021/nl025547l
  6. J. W. Yoo, D. Hathcock, and M. A. El-Sayed, "Characterization of pt Nanoparticles Encapsulated in $Al_2O_3$ and Their Catalytic Efficiency in Propene Hydrogenation," J. Phys. Chem. A, 106 2049-54 (2002) https://doi.org/10.1021/jp0121318
  7. R. A. Reynolds, C. A. Mirkin, and R. L. Letsinger, "Homogeneous, Nanoparticle-based Quantitative Colormetric Detection of Oligonucleotides," J. Am. Chem. Soc., 122 3795-96 (2000) https://doi.org/10.1021/ja000133k
  8. D. Zanchet, C. M. Micheel, W. J. Parak, D. Gerion, S. C. Williams, and A. Alivisatos, "Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings," J. Phys. Chem. B, 106 11758-763 (2002) https://doi.org/10.1021/jp026144c
  9. J. M. Nam, S. J. Park, and C. A. Mirkin, "Bio-Barcodes Based on Oligonucleotide-Modified Nanoparticles," J. Am. Chem. Soc., 124 3820-21 (2002) https://doi.org/10.1021/ja0178766
  10. P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine, and M. Broyer, "Enhancement of the Second Harmonic Response by Adsorbates on Gold Colloids: The Effect of Aggregation," J. Phys. Chem. B, 103 8706-10 (1999) https://doi.org/10.1021/jp991937t
  11. C. A. Mirkin, R. L. Letsinger, and R. C. Mucic, "A DNA-based Method for Rationally Assembling Nanoparticles into Macroscopic Materials," J. J. Storhoff, Nature, 382 607-09 (1996) https://doi.org/10.1038/382607a0
  12. M. Han, X. Gao, J. Z. Su, and S. Nie, "Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules," Nat. Biotechnol., 19 631-35 (2001) https://doi.org/10.1038/90228
  13. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices," Science, 287 1989-92 (2000) https://doi.org/10.1126/science.287.5460.1989
  14. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Ateater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater., 19 1501-05 (2001) https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
  15. W. P. McConnell, J. P. Novak, L. C. Brousseau III, R. R. Fuierer, R. C. Tenent, and D. L. Feldheim, "Electronic and Optical Properties of Chemically Modified Metal Nanoparticles and Molecularly Bridged Nanoparticle Arrays," J. Phys. Chem. B, 104 8925-30 (2000) https://doi.org/10.1021/jp000926t
  16. S. Chen, Y. Yang, "Magnetoelectrochemistry of Gold Nanoparticle Quantized Capacitance Charging," J. Am. Chem. Soc., 124 5280-81 (2002) https://doi.org/10.1021/ja025897+
  17. G. De, L. Tapler. G. Battaglin , F. Caccavale, F. Gonella, P. Mazzoldi, and R.F.Haglund Jr., "Formation of Copper and Silver Nanometer Dimension Clusters in Silica by the Solgel Process," Appl. Phys. Lett., 68 3820-22 (1996) https://doi.org/10.1063/1.116628
  18. T.Kokugan, A. Trianto, and H. Takeda, "Dehydrogenation of Pure Cyclohexane in the Membrane Reactor and Prediction of Conversion by Pseudo Equilibrium Model," J. Chem. Eng. Jpn., 31 596-603 (1998) https://doi.org/10.1252/jcej.31.596
  19. T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, "Phosphor Materials for Cathode-ray Tubes," Adv. Electron. Phys., 79 271 (1990) https://doi.org/10.1016/S0065-2539(08)60600-9
  20. G. Blasse and B.C. Grabmaier, Luminescent Materials, Springer, Berlin, 1994
  21. Y. Wang and N. Herron, "Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties," J. Phys. Chem., 95 525-532 (1991) https://doi.org/10.1021/j100155a009
  22. Y.M. Tricot and J.H. Fendler, "In Situ Generated Colloidal Semiconductor CdS Particles in Dihexadecyl Phosphate Vesicles: Quantum Size and Asymmetry Effects," J. Phys. Chem., 90 3369-74 (1986) https://doi.org/10.1021/j100406a013
  23. N. F. Borelli, D. W. Hall, J. H. Holland, and W. D. Smith, "Photoluminescence and Relaxation Dynamics of CdS Superclusters in Zeolites," J. Phys. Chem., 92 4988-494 (1988) https://doi.org/10.1021/j100328a033
  24. Y. Wang and W. Mahler, "Degenerate Four-wave Mixing of CdS/polymer Composite," Opt. Comm., 61 233-36 (1987) https://doi.org/10.1016/0030-4018(87)90145-3
  25. N. Ichinose, "Introduction to Fine Ceramics," p. 3, Wiley, New York, 1987
  26. N. Ichinose, Y. Ozaki, and S. Kashu, "Superfine Particle Technology," p. 24, Springer-Verlag, New York, 1988
  27. C. J. Brinker and G. W. Scherer, "Sol-Gel Science Academic Press," p.2 , San Diego, 1990
  28. J. Vanherle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, "Low-Temperature Fabrication of (Y,Gd, Sm)-Doped Ceria Electrolyte," Solid State Ionics, 86-90 1255-58 (1996)
  29. R. W. G. Wyckoff, Cryst. Struc., p. 4, vol. 2, Interscience, New York, 1964
  30. Micheli AL, Dungan DF, and Martese JV., "High-Density Yttria for Practical Ceramic Applications," J. Am. Ceram. Soc., 75 709-711 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb07863.x
  31. Roy S, Sigmund W, and Aldinger F, "Grain Modification in Y2O3 Powders Coarse to Nanoporous," J. Mat. Sc. Lett., 16 1148-50 (1997)
  32. A. E. Neeves and M. H. Birnboim, "Composite Structures for the Enhancement of Nonlinear-optical Susceptibility," J. Opt. Soc. Am. B, 6 787-96 (1989) https://doi.org/10.1364/JOSAB.6.000787
  33. T. Li, J. J. Mecholsky, D.R.Talham, and J.H.Adair, "Preparation of Ag/$SiO_2$ Nanosize Composites by a Reverse Micelle and Sol-Gel Technique," Langmuir, 15 4328-34 (1999) https://doi.org/10.1021/la970801o
  34. K. Osseo-Asare and F.J. Arrigada, "Synthesis of Nanosize Particles in Reverse Microemulsions," Ceramic Trans, 12 6-16 (1990)