DOI QR코드

DOI QR Code

Microstructure and Hardness Changes of the CVD-ZrC Film with Different Deposition Temperature

증착온도 변화에 따른 화학증착 ZrC의 미세구조와 경도 변화

  • Park, Jong-Hoon (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Jung, Choong-Hwan (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Weon-Ju (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Do-Jin (Department of Materials Engineering College of Engineering, Chungnam National University) ;
  • Park, Ji-Yeon (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
  • 박종훈 (한국원자력연구원 원자력재료연구부) ;
  • 정충환 (한국원자력연구원 원자력재료연구부) ;
  • 김원주 (한국원자력연구원 원자력재료연구부) ;
  • 김도진 (충남대학교 재료공학과) ;
  • 박지연 (한국원자력연구원 원자력재료연구부)
  • Published : 2008.09.30

Abstract

The properties of a grown film by the chemical vapor deposition process depend on the deposition temperature because the deposition mechanism of the CVD film is controlled by the deposition temperature. The preferred orientation of the zrC film changed from (111) to (220) or (200) with an increase of the deposition temperature. The grain size of the ZrC film changes from $0.8{\mu}m$ to $2.5{\mu}m$ in the range of 1350 to $1500^{\circ}C$. The hardness of the deposited ZrC film depended on the preferred orientation and the grain size. The hardness of the ZrC film deposited at $1400^{\circ}C$ was 31 GPa.

Keywords

References

  1. A. Arya and Emily A. Carter, "Structure, Bonding, and Adhesion at the ZrC(100)/ Fe(110) Interface from First Principles," Surf. Sci., 560 103-20 (2004) https://doi.org/10.1016/j.susc.2004.04.022
  2. G.-M. Song, Y.-J. Wang, and Y. Zhou, "The Mechanical and Thermophysical Properties of ZrC/W Composites at Elevated Temperature," Mater. Sci. Eng. A, 334 223-32 (2002) https://doi.org/10.1016/S0921-5093(01)01802-0
  3. K, -T. Rie, J. Whole, and Gebauer, "Synthesis of thin Coatings by Plasma-assisted Chemical Vapour Deposition Using Metallo-organic Compounds as Precursors," Surf. Coat. Tech., 59 202-06 (1993) https://doi.org/10.1016/0257-8972(93)90083-Z
  4. H. Berndt, A. Q. Zeng, H. R. Stock, and P. Mayr, "Zirconium Carbonitride Film Produced by Plasma-assisted Metal Organic Chemical Vapor Deposition," Surf. Coat. Tech., 74-75 369-74 (1995) https://doi.org/10.1016/0257-8972(95)08242-5
  5. H. -R. Stock, H. Berndt, and P. Mayr, "Plasma-assisted Chemical Vapour Deposition with Titanium Amides as Precursors," Surf. Coat. Tech., 61 15-23 (1991)
  6. Y. S. Won, Y. S. Kim, V. G. Varanasi, O. Kryliouk, T. J. Anderson, C. T. Sirimanne, and Lisa McElwee-White, "Growth of ZrC Thin Film by Aerosol-assisted MOCVD," J. Cryst. Growth, 304 324-32 (2007) https://doi.org/10.1016/j.jcrysgro.2006.12.071
  7. C. M. Hollabauch, R. D. Reiswig, P. Wagner, L. A. Wahman, and R. W. White, "A New Method for Coating Microspheres with Zirconium Carbide and Zirconium Carbidecarbon Coats," J. Nucl. Mater., 57 325-32 (1975) https://doi.org/10.1016/0022-3115(75)90217-2
  8. P. Wagner, "Research, Development and Production of Substoichiometric Zirconium Carbide for High-temperature Insulation," LASL Report, LA-5224 (1973)
  9. K. Ikawa and K. Iwamoto, "Coating Microspheres with ZrC-C Composites by the Methylene Dichloride Process," J. Ceram. Soc. Japan, 81 403-6 (1973) https://doi.org/10.2109/jcersj1950.81.938_403
  10. D. J. Kim and D. J. Choi, "Microhardness and Surface Roughness of Silicon Carbide by Chemical Vapour Deposition," J. Mater. Sci. Lett., 16 286-89 (1997) https://doi.org/10.1023/A:1018549001328
  11. H. S. Kim and D. J Choi, "Effect of Diluent Gases on Growth Behavior and Characteristics of Chemically Vapor Deposited Silicon Carbide Films," J. Am. Ceram. Soc., 82 [2] 331-37 (1999) https://doi.org/10.1111/j.1551-2916.1999.tb20066.x
  12. K. Ikawa and K. Iwamoto, "Coating Microspheres with Zirconium Carbide-carbon Alloy by Iodide Process," J. Nucl. Sci. Tech., 11 [6] 263-67 (1974) https://doi.org/10.3327/jnst.11.263
  13. T. Ogawa, K. Ikawa, and K. Iwamoto, "Chemical Vapor Deposition of ZrC within a Spouting Bed by Bromide Process," J. Nucl. Mater., 97 104-12 (1981) https://doi.org/10.1016/0022-3115(81)90423-2
  14. "Standard Test Methods for Determining Average Gram Size," ASTM E 112-96 (2004)
  15. W. C. Oliver and G. M. Pharr, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments," J. Mater. Res., 7 [6] 1564-83 (1992) https://doi.org/10.1557/JMR.1992.1564
  16. C. Barret and T. B. Massalski, "Structure of Metals," pp. 204, Pergamon Press, Oxford, 1980
  17. W. J. Kim, J. Y. Park, J. I. Kim, G. W. Hong, and C. Y. Ha, "Deposition of Large Area SiC Thick Films by Low Pressure Chemical Vapor Deposition (LPCVD) Method(in Korean)," J. Kor. Ceram. Soc., 38 [5] 485-91 (2001)
  18. J. Chin P. K. Gantzel, and R. G. Hudson, "The Structure of Chemical Vapor Deposited Silicon Carbide," Thins Solid Films, 41 57-72 (1977) https://doi.org/10.1016/0040-6090(77)90009-8
  19. B. A. Movchan and A. V. Demchishin, "Investigation of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, and Aluminum Oxide," Fiz. Metal. Metalloved, 28 [4] 653-60 (1969)