DOI QR코드

DOI QR Code

Thermal and Electrochemical Properties of Polymannuronate-polyaniline Nanocomposites

  • Basavaraja, C. (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Veeranagouda, Y. (Department of Microbiology, Changwon University) ;
  • Kim, Na-Ri (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Jo, Eun-Ae (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Lee, Kyoung (Department of Microbiology, Changwon University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Functional Materials, Inje University)
  • Published : 2009.05.20

Abstract

New types of conducting polyaniline-polymannuronate (PANI-PM) composites were synthesized by in situ deposition techniques in an aqueous media. By dissolving different weight percentage of polymannuronate (PM) (5, 10, 15, and 25%), the oxidative polymerization of aniline was carried out using ammonium per sulfate as an oxidant. The obtained composites were studied for their thermal stability and electrochemical behavior. The thermal stability of PANI-PM composites is lower than PANI, which supports a strong interaction between PANI and PM. However, the composites show an appreciable electrochemical behavior. Based on these observation the PANI-PM composites can be explored in different fields such as electric devices, sensors, functional coatings, etc.

Keywords

References

  1. Gewu, L. U.; Chen, F.; Xufeng, W. U.; Liangti, Q. U.; Zhang, J.; Shi, G. Chin. Sci. Bull. 2005, 50(16), 1673 https://doi.org/10.1360/982005-670
  2. Gill, E.; Arousian, A.; Khalil, A.; Olga, K. Sensors 2007, 7, 3329 https://doi.org/10.3390/s7123329
  3. Ninel, P. B.; Anna, A. K.; Sergey, V. T.; Larisa, V. K. J. Solid State Electrochem. 2007, 11, 378 https://doi.org/10.1007/s10008-006-0159-2
  4. Yuvraj, S. N.; Adhyapak, P. V. J. Macromol. Sci-Polym. Rev. 2002, C42(1), 35
  5. Benjamin, J. A.; Richard, W. S.; Linda, S. S. Macromolecules 2004, 37(4), 1358 https://doi.org/10.1021/ma0354400
  6. Schultze, J. W.; Karabulut, H. Electrochimica Acta 2005, 50(7-8), 1739 https://doi.org/10.1016/j.electacta.2004.10.023
  7. Marina, M.; Catia, A.; Francesca, S. Solid State Ionics 2002, 148(3-4), 493 https://doi.org/10.1016/S0167-2738(02)00093-0
  8. Dhawan, S. K.; Singh, N.; Rodrigues, D. Science and Technology of Advanced Materials 2003, 4(2), 105 https://doi.org/10.1016/S1468-6996(02)00053-0
  9. Sarswati, K.; Chandra, R.; Dhawan, S. K. Sensors and Actuators B: Chemical 2001, 75(3), 151 https://doi.org/10.1016/S0925-4005(00)00685-7
  10. Shilpa, J.; Sanjay, C.; Samui, A. B.; Krishnamurthy, V. N.; Bhoraskar, S. V. Sensors and Actuators B: Chemical 2003, 96(1-2), 124 https://doi.org/10.1016/S0925-4005(03)00511-2
  11. Franco, D. R. A.; Evandro, G.; Jane, Z. F.; Marco, A. S. R.; Carlos, A. F. J. Mem. Sci. 2004, 234(1-2), 139 https://doi.org/10.1016/j.memsci.2004.01.017
  12. Gupta, R. K.; Singh, R. A. J. Non-Crystalline Solids 2005, 351(24-26), 2022 https://doi.org/10.1016/j.jnoncrysol.2005.05.017
  13. Philip, N. B.; Evelyne, S. Phys. Chem. Chem. Phys. 2000, 2, 2599 https://doi.org/10.1039/b001107j
  14. Bartlett, P. N.; Wallace, E. N. K. J. Electroanal. Chem. 2000, 486(1), 23 https://doi.org/10.1016/S0022-0728(00)00123-6
  15. Oleg, A. R.; Eugenil, K.; Andreas, F. B.; Itmar, W. J. Am. Chem. Soc. 2002, 124(22), 6487 https://doi.org/10.1021/ja012680r
  16. Ronald, E. P.; Roy, D. K.; Jose, P. J. Sensors and Actuators A: Physical 1998, 64(1), 77 https://doi.org/10.1016/S0924-4247(97)01657-9
  17. Zhao, H.; Liu, H.; Chen, Y.; Xin, X.; Li, J.; Hou, Y.; Zhang, Z.; Zhang, X.; Xie, C.; Geng, M.; Ding, J. Cancer Res. 2006, 66, 8779 https://doi.org/10.1158/0008-5472.CAN-06-1382
  18. Jeong, J. J.; Kim, J. H.; Kim, C. K.; Hwang, I.; Lee, K. Microbiology 2003, 149, 3265 https://doi.org/10.1099/mic.0.26628-0
  19. Halaas, O.; Olsen, W. M.; Veiby, O. P.; Lovhaug, D.; Skjak, B. G.; Vik, R.; Espevik, T. Scand. J. Immunol. 1997, 46, 358 https://doi.org/10.1046/j.1365-3083.1997.d01-138.x
  20. Jahr, T. G.; Ryan, L.; Sundan, A.; Lichenstein, H. S.; Skjak, B. G.; Espevik, T. Infect. Immun. 1997, 65, 89
  21. Liew, C. V.; Chan, L. W.; Ching, A. L.; Heng, P. W. Int. J. Pharm. 2006, 309, 25 https://doi.org/10.1016/j.ijpharm.2005.10.040
  22. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Huh D. S. J. Poly. Sci.: Part B: Poly. Phys. 2009, 47, 36 https://doi.org/10.1002/polb.21611
  23. Basavaraja, C.; Veeranagouda, Y.; Lee, K.; Pierson, R.; Huh D. S. Bull. Korean Chem. Soc. 2008, 29(12), 2423 https://doi.org/10.5012/bkcs.2008.29.12.2423
  24. Aysegul, G.; Bekir, S.; Muzaffer, T. Synth. Met. 2004, 142(1-3), 41 https://doi.org/10.1016/j.synthmet.2003.07.002
  25. Kurt, I. D.; Gudmund, S. B.; Olav, S. Int. J. Biol. Macromolecules 1997, 21, 47 https://doi.org/10.1016/S0141-8130(97)00040-8
  26. Dao-jin, G.; Hu-lin, L. J. Solid State Electrochem. 2005, 9, 445 https://doi.org/10.1007/s10008-004-0589-7
  27. Prakash, R. S. Mater. Chem. Phys. 2002, 77(1), 81
  28. Patil, S. F.; Bedekar, A. G.; Chitra, A. Mater. Lett. 1992, 14(5-6), 307 https://doi.org/10.1016/0167-577X(92)90043-J

Cited by

  1. Preparation of agcl/polyaniline nanocomposite in polyvinylalcohol matrix and its electrocatalytic activity vol.132, pp.35, 2015, https://doi.org/10.1002/app.42366
  2. Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films vol.32, pp.3, 2011, https://doi.org/10.5012/bkcs.2011.32.3.927
  3. Characterization and DC electrical conductivity of the composite films containing polyaniline‐carboxymethyl cellulose vol.33, pp.9, 2009, https://doi.org/10.1002/pc.22289