## Organocatalytic Asymmetric Michael Addition of β-Ketoesters to Nitroalkenes

Bo Kyung Kwon and Dae Young Kim\*

Department of Chemistry, Soonchunhyang University, Asan, Chungnam 336-745, Korea. 'E-mail: dyoung@sch.ac.kr Received April 23, 2009, Accepted June 4, 2009

Key Words: Bifunctional organocatalysts, Michael addition, Asymmetric reactions, β-Ketoesters, Nitroalkenes

The Michael addition reaction is widely recognized as one of the most general and versatile methods for formation of C-C bonds in organic synthesis.1 and the development of enantioselective catalytic protocols for this reaction has been subject of intensive research.<sup>2</sup> In addition to the great success catalyzed by metal complexes, the powerful and environmentally friendly organocatalyst-mediated asymmetric Michael reaction has been explored intensively in recent years.34 Michael reaction of nucleophiles to nitroalkenes represents a direct and most appealing approach to chiral nitroalkanes that are versatile intermediates in organic synthesis, which can be transformed into an amine, nitrile oxide, ketone, carboxylic acid. hydrogen *etc.*<sup>5</sup> The conjugate addition of  $\alpha$ -substituted dicarbonyl compounds to suitable acceptor represents an important approach to generate all-carbon quaternary stereogenic centers. Takemoto et al. applied their bifunctional thiourea catalyst in asymmetric Michael addition of βketoester compounds to nitroolefins.<sup>6</sup> Also, Deng et al. reported the construction of quaternary stereogenic centers by conjugate addition of  $\beta$ -ketoesters mediated by cinchona alkaloid catalyst.

As part of research program related to the development of synthetic methods for the enantioselective construction of

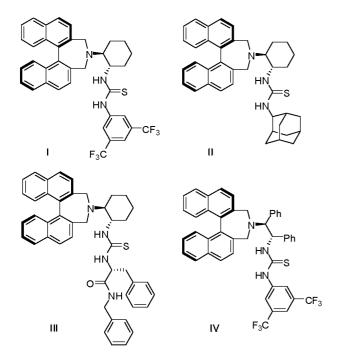



Figure 1. Structure of chiral thiourea-tertiary amine catalysts.

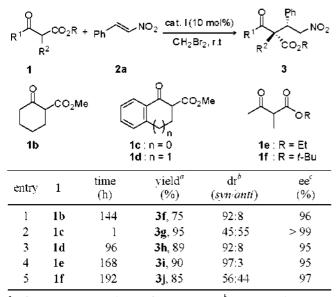
stereogenic carbon centers.<sup>8</sup> we recently reported chiral an une-thiourea I (Fig. 1) to be a highly selective catalyst for the enantioselective anination of active methines.<sup>9</sup> We envision that the rigid binaphthyl structure can serve as an efficient stereocontrolling axial chiral element. Herein, we wish to describe the direct asymmetric Michael reaction of  $\beta$ -ketoesters to nitroalkenes with catalyzed by bifunctional organocatalysts bearing both central and axial chiral elements.

A survey of some reaction parameters was performed, and some representative results are presented in Table 1. Our investigation began with the catalytic asymmetric Michael addition of methyl cyclopentanone 2-carboxylate (1a) with nitrostyrene (2a). When the reaction was performed in toluene at room temperature in the presence of 10 mol% catalyst **L** product **3a** was isolated in high yield with 85% ee (Table 1, entry 1). We first examined the impact of the structure of catalysts **I-IV** on enantioselectivity (Table 1, 60-85% ee, entries 1-4). The best results have been obtained with catalysts **I** and **IV**. Concerning the solvent (entries 1, 5-7), the use of halogenated solvents, especially, dibromomethane gave the best result in the yield and the enantiomeric excess (>99% ee, entry 6).

We then explored the possibility of using wide range of para-substituted aromatic and heteroaromatic nitroalkenes 2 with  $\beta$ -ketoester 1a under the optimized reaction condition.

Table 1. Optimazation of the reaction conditions

| $\bigcup_{h \to \infty} CO_2 Me + Ph \xrightarrow{NO_2} \frac{cat. (10 \text{ mol}\%)}{PhMe, r.t} \xrightarrow{O} \frac{Ph}{CO_2 Me}$ |      |             |                           |                               |                        |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------|-------------|---------------------------|-------------------------------|------------------------|--|--|--|--|--|
| 1a                                                                                                                                    |      | 2a 3a       |                           |                               | 3а                     |  |  |  |  |  |
| entry                                                                                                                                 | cat. | time<br>(h) | yield <sup>a</sup><br>(%) | dr <sup>b</sup><br>(syn/anti) | ee <sup>c</sup><br>(%) |  |  |  |  |  |
| 1                                                                                                                                     | I    | 12          | 95                        | 85:15                         | 85                     |  |  |  |  |  |
| 2                                                                                                                                     | П    | 32          | 93                        | 90:10                         | 73                     |  |  |  |  |  |
| 3                                                                                                                                     | Ш    | 48          | 92                        | 77:23                         | 60                     |  |  |  |  |  |
| 4                                                                                                                                     | IV   | 120         | 90                        | 94:6                          | 83                     |  |  |  |  |  |
| $5^d$                                                                                                                                 | Ι    | 6           | 95                        | 86:14                         | 91                     |  |  |  |  |  |
| 6°                                                                                                                                    | Ι    | 4           | 98                        | 86:14                         | > 99                   |  |  |  |  |  |
| 7′                                                                                                                                    | Ι    | 10          | 93                        | 85:15                         | 89                     |  |  |  |  |  |


<sup>°</sup>Refers to the isolated mixture of diastereomers. <sup>b</sup>Determined from crude <sup>1</sup>H NMR spectra. <sup>°</sup>Enantiomeric excess of the major isomer, determined by chiral HPLC analysis. <sup>d</sup>The reaction was run in CH<sub>2</sub>Cl<sub>2</sub> as solvent. <sup>°</sup>The reaction was run in CH<sub>2</sub>Br<sub>2</sub> as solvent. <sup>d</sup>The reaction was run in CHCl<sub>3</sub> as solvent.

| Table 2. Variation of the introalkent | fable 2. | tion of the nitroalke | me |
|---------------------------------------|----------|-----------------------|----|
|---------------------------------------|----------|-----------------------|----|

| $\bigcup_{r \in \mathcal{O}_2}^{O} CO_2Me + Ar \xrightarrow{NO_2} \frac{cat. I (10 mol\%)}{CH_2Br_2, r.t} \xrightarrow{O} \overset{Ar}{\underset{r \in \mathcal{O}_2}^{Ar} NO_2}$ |                              |             |                           |                               |                        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|---------------------------|-------------------------------|------------------------|--|--|--|--|
| 1a                                                                                                                                                                                | 2                            |             |                           | 3                             |                        |  |  |  |  |
| entry                                                                                                                                                                             | 2, Ar                        | time<br>(h) | yield <sup>a</sup><br>(%) | dr <sup>b</sup><br>(synvanti) | ee <sup>c</sup><br>(%) |  |  |  |  |
| 1                                                                                                                                                                                 | <b>2</b> a, Ph               | 4           | <b>3a</b> , 98            | 86:14                         | > 99                   |  |  |  |  |
| 2                                                                                                                                                                                 | <b>2b</b> , <i>p</i> -F-Ph   | 3           | <b>3b</b> , 96            | 86:14                         | 93                     |  |  |  |  |
| 3                                                                                                                                                                                 | <b>2c</b> , <i>p</i> -Cl-Ph  | 3           | <b>3c</b> , 97            | 84:16                         | 95                     |  |  |  |  |
| $4^d$                                                                                                                                                                             | 2d, <i>p</i> -Me-Ph          | 36          | <b>3d</b> , 91            | 85:15                         | 91                     |  |  |  |  |
| 5                                                                                                                                                                                 | <b>2</b> e, <i>p</i> -MeO-Ph | 18          | <b>3e</b> , 90            | 82:18                         | 88                     |  |  |  |  |

<sup>a</sup>Refers to the isolated mixture of diastereomers. <sup>b</sup>Determined from crude <sup>1</sup>H NMR spectra. <sup>c</sup>Enantiomeric excess of the major isomer, determined by chiral HPLC analysis. <sup>d</sup>This reaction was carried out at -40 <sup>o</sup>C.

**Table 3.** Variation of the  $\beta$ -ketoester



<sup>a</sup>Refers to the isolated mixture of diastereomers. <sup>b</sup>Determined from crude <sup>1</sup>H NMR spectra. <sup>c</sup>Enantiomeric excess of the major isomer, determined by chiral HPLC analysis.

As shown in Table 2, the products **3a-e** were formed in high yields (90-98%), high diastereoselectivities, and excellent enatioselectivities (88 - > 99%).

To examine the generality of the catalytic asymmetric Michael reaction of  $\beta$ -ketoesters 1 by using new bifunctional organocatalyst **I**, we studied the addition of various  $\beta$ ketoesters 1 to nitrostyrene (2a). As it can be seen by the results summarized in Table 3, the corresponding products **3f-j** were obtained in high to excellent yields, high diastereoselectivities, and excellent enantioselectivities. The absolute configuration of adducts **3** has been determined for some derivatives by comparison of their optical and HPLC properties with literature values.<sup>6,7</sup>

In conclusion, we have developed a highly efficient catalytic asymmetric Michael reaction of  $\beta$ -ketoesters to nitroalkenes using bifunctional organocatalyst I. The desired  $\gamma$ -nitro carbonyl compounds were obtained in good to high yields, excellent diastereoselectivities (up to 86:14), and excellent enantioselectivities (up to > 99% ee) were observed. Further study of these bifunctional organocatalysts in asymmetric reactions is being under investigation.

## References

- Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis, Pergamon: Oxford, 1992.
- For recent reviews of asymmetric Michael addition reactions, see: (a) Berner, O. M.; Tedeschi, L.: Enders, D. Eur. J. Org. Chem. 2002, 1877. (b) Christoffers, J.; Baro, A. Angew. Chem. Int. Ed. 2003, 42, 1688.
- For selected recent reviews for bifunctional organocatalysts, see: (a) Connon, S. J. Synlett 2009, 354. (b) Yu, X.: Wang, W. Chem. Asian J. 2008, 3, 516. (c) Doyle, A. G.: Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.
- For recent reviews of organocatalytic asymmetric Michael addition, see: (a) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
   (b) Almasi, D.; Alonso, D. A.; Najera, D. Tetrahedron: Asymmetry 2007, 18, 299.
- (a) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001. (b) Ballini, R.: Petrini, M. Tetrahedron 2004, 60, 1017. (c) Czekelius, C.; Carreira, E. M. Angew. Chem. Int. Ed. 2005, 44, 612.
- Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
- (a) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. *Angew. Chem. Int. Ed.* **2005**, *44*, 105. (b) Wu, F.; Li, H.; Hong, R.; Deng, L. *Angew. Chem. Int. Ed.* **2006**, *45*, 947.
- 8. (a) Mang, J. Y.; Kwon, D. G.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 259. (b) Lee, N. R.; Kim, S. M.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 829. (c) Mang, J. Y.; Kwon, D. G.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 249. (d) Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2036. (e) Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2008, 29, 2093. (f) Lee, J. H.; Bang, H. T.; Kim, D. Y. Synlett 2008, 1821. (g) Kang, Y. K.; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135. (h) Kim, S. M.; Kang, Y. K.; Cho, M. J.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2435. (i) Cho, M. J.; Kang, Y. K.; Lee, N. R.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2191. (j) Kim, S. M.; Kang, Y. K.; Lee, K.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2006, 27, 423. (k) Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4265. (I) Kim, H. R.; Kim, D. Y. Tetrahedron Lett. 2005, 46, 3115. (m) Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett. 2005, 7, 2309. (n) Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897. (o) Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545. (p) Kim, D. Y.; Huh, S. C.; Kim, S. M. Tetrahedron Lett. 2001, 42, 6299. (q) Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933.
- (a) Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett **2008**, 2659. (b)
  Jung, S. H.; Kim, D. Y. Tetrahedron Lett. **2008**, 49, 5527. (c)
  Mang, J. Y.; Kim. D. Y. Bull. Korean Chem. Soc. **2008**, 29, 2091.