Synthesis, Characterization, and Crystal Structures of Novel Coordination Polymers of Praseodymium(III) and Neodymium(III) Containing Dialkyl Phosphate

Masoud Rafizadeh, Vahid Amani, ${ }^{* \times *}$ and Neda S. Mortazavi
Faculty of Chemistry, Tarbiat Hoallem University, Tehran, Iran
${ }^{\dagger}$ Islanic Azad Unversity, Shahr-e-Rev Branch. Tehran, Iran. ${ }^{*}$ E-mall: vamani2002ovahoo.com Recenved November 13, 2008, Accepted December 15, 2008

Key Words: Neodymium(III). Praseodymium(III). Diethyl phosphate. Dimethỵl phosphate. Dimethyl sulfoxide

Metal complexes incorporating various types of phosphate moieties are being examined in order to explore the metalbinding properties of such ligands and to elucidate the importance of these interactions in biological systems. Mononuclear. ${ }^{1,2}$ binuclear, ${ }^{2-16}$ trinuclear. ${ }^{17,18}$ tetranuclear ${ }^{19-23}$ and polymeric ${ }^{-4}$ complexes have been reported in which the phosphate moieties adopt monodentate. chelating. and bridging binding modes. These examples include heterometallic complexes. ${ }^{\text {T }}$ Moreover. in addition to phosphate and phosphate ester complexes: complexes incorporating nucleic acid fragments. ATP. polyphosphates, and polyphosphate esters have been structurally characterized. ${ }^{56-55}$ Recently. we have reported the synthesis and crystal structure of $\left[\mathrm{La}(\mu-\mathrm{DMP}) \geq\left(\mu-\mathrm{NO}_{3}\right)(\mathrm{DMSO})\right]_{\mathrm{n} .}{ }^{39}$ $\left[\mathrm{UO}_{2}(\mu-\mathrm{DEP})_{2}(\mathrm{DMSO})\right]_{n .}{ }^{31}\left[\mathrm{UO}_{2}(\mu-\mathrm{DMP})_{2}(\mathrm{DMSO})\right]_{\mathrm{n},}{ }^{33}\left[\mathrm{Ce}_{2}-\right.$ $\left.(\mu-\mathrm{DEP})_{6}(\mathrm{TEP})\right]_{n} .{ }^{3.3}\left\{\left[\mathrm{Mnn}(\mu-\mathrm{DMP})_{3}(\mu-\mathrm{DMSO})_{2}(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-\right.$ $\mathrm{NO}_{3} \mathrm{H}_{2} \mathrm{O}_{31}{ }^{3} \cdot{ }^{34}\left[\mathrm{Cu}(\mu-\mathrm{DMP})_{4}(\mu-\mathrm{DMSO})\right]_{12}{ }^{35}$ and $\left[\mathrm{Mn}\left(\mu_{3}-\mathrm{DMP}\right)=\right.$ $\left.-(\mu-\mathrm{DMP})_{2}\right]_{\mathrm{n} .}{ }^{36}$ (DMP is dimethyl phosplate. DEP is diethyl phosphate. TEP is triethyl phosphate and DMSO is dimethyl sulfoxide). In these complexes. DMP and DEP act as an O -atom donor ligand, forming coordination polymers in the solid state. Also, we reported the synthesis and crystal structures of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](\mathrm{DMP})_{2}$ as an ionic complex. ${ }^{3 /}$ In this complex. DMP is not bonded to the metal, and acts as a independent counter-ion. We have also reported the synthesis and crystal structures of $\left[\mathrm{Fe}_{1_{6}}\left(\mu_{3}-\mathrm{O}\right)_{8}\left(\mu_{3}-\mathrm{OH}\right)_{4}(\mu-\mathrm{OH})_{4}(\mu-\mathrm{DMP})_{1_{2}}(\mu-\mathrm{OAC})_{1_{2}}-\right.$ (DMSO) 4] 2 DMSO $\cdot 1.5 \mathrm{H}_{2} \mathrm{O} .{ }^{38}$ within which an macromolecule constellation consisting of sixteen iron ion connected by twelve bridging dimethyl phosphate. twelve bridging acetate, eight μ_{3}-oxo. four $\mu_{3}-\mathrm{OH}$. four $\mu-\mathrm{OH}$ and four dimethyl sulfoxide ligands. We now report on the sy nthesis. characterization and crystal structure of novel polymer of praseody mium(III) and neodymium(III) complexes.

Experimental Section

All chemicals were purchased from Merck and Aldrich. Infrared spectra ($4000-250 \mathrm{~cm}^{-1}$) of solid samples were taken as 1% dispersion in KBr pellets using a shimadzu- 470 spectrometer. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra were acquired on a Bruker AC- 300 MHz spectrometer at ambient temperature in $\mathrm{D}_{2} \mathrm{O}$. Melting points were is uncorrected and were obtained by a Kofler Heizbank Rechart type 7841 melting
point apparatus.
Synthesis of $\left[\mathbf{N d}(\mu-\mathrm{DEP})_{3}\right]_{\mathrm{n}}(\mathbf{1})$. Triethyl phosphate (3.31g. $3.1 \mathrm{~mL}, 18 \mathrm{mmol})$ was added to a solution of $\mathrm{NdCl}_{3}(0.93 \mathrm{~g}$. 3.6 mmol) in ethanol (40 mL) and DMSO (5 mL) and the resulting pale violet solution was stirred at $40^{\circ} \mathrm{C}$ for 30 minute. Then. it was left to evaporate slowly at room temperature. After two months. colorless prismatic crystals of $\mathbf{1}$ were isolated (yield $1.62 \mathrm{~g} .74 .56 \%$, m. p $<300^{\circ} \mathrm{C}$). $\mathrm{IR}\left(\mathrm{KBr.cm}^{-1}\right)$: 2984s. $2940 \mathrm{~m} .2912 \mathrm{~m}(\mathrm{vCH}), 1446 \mathrm{w} .1399 \mathrm{~m} .1372 \mathrm{w}, 1197 \mathrm{~s}$. 1181s. 1168s. 1117s. 1093s. 1066s. 1044s (vC-O-P), 977s. $825 \mathrm{~s} .778 \mathrm{~m}(v \mathrm{P}-\mathrm{O}) .576 \mathrm{~m} .541 \mathrm{~m} .504 \mathrm{~m} .409 \mathrm{w} .388 \mathrm{~m} .332 \mathrm{w}$ ($\mathrm{vNd}-\mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): 1.52 (bs. $\mathrm{CH}_{3}-\mathrm{CH}_{2}$) and 4.71 (bs. $\mathrm{CH}_{3}-\mathrm{CH}_{2}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $16.0\left(\mathrm{~d} . \mathrm{J}_{i p}=6.3 \mathrm{~Hz}\right)$ and $63.3\left(\mathrm{~d} . \mathrm{J}_{c p}=4.6 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): 40.2$ (s) ppm. Elemental analysis (\%) calcd. for $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{NdO}_{12} \mathrm{P}_{3}(603.51 \mathrm{~g} /$ mol): C. 23.86: H, 4.97. Found. C. 23.71; H, 4.89.

Synthesis of $\left[\mathrm{Pl}(\mu-\mathrm{DMP})_{2}\left(\mu-\mathrm{NO}_{3}\right)(\mathrm{DMSO})\right]_{\mathrm{n}}$ (2). Trimethyl phosphate ($2.55 \mathrm{~g} .2 .1 \mathrm{~mL}, 18 \mathrm{mmol}$) was added to a solution of $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.53 \mathrm{~g} .3 .6 \mathrm{mmol})$ in ethanol $(40 \mathrm{~mL})$ and DMSO (5 mL) and the resulting pale green solution was stirred at $40^{\circ} \mathrm{C}$ for 30 minute. Then it was left to evaporate slowly at room temperature. After three months. pale green needle cry'stals of 2 were isolated (yield $1.48 \mathrm{~g} .77 .40 \%, \mathrm{~m} . \mathrm{p}<300^{\circ} \mathrm{C}$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3013s. 2992s. 2964s. 2933m, 2860s (vCH), 1482s. $1465 \mathrm{~s}, 1+43 \mathrm{~s}, 1406 \mathrm{~s}, 1361 \mathrm{~s}, 1340 \mathrm{~s}, 1311 \mathrm{~s}, 1243 \mathrm{~s}, 1160 \mathrm{~s}, 1136 \mathrm{~s}$. $1081 \mathrm{~s} .1020 \mathrm{~s}(\mathrm{vC}-\mathrm{O}-\mathrm{P}) .995 \mathrm{~s}$. v $(\mathrm{S}=\mathrm{O}) .965 \mathrm{~s} .946 \mathrm{~s} .849 \mathrm{~s} .838 \mathrm{~s}(\mathrm{v}$ P-O). $820 \mathrm{~s} .785 \mathrm{~s} .778 \mathrm{~s} .755 \mathrm{~s} .730 \mathrm{~mL}, 683 \mathrm{w}, 604 \mathrm{~m} .576 \mathrm{~m} .534 \mathrm{~s}$, $490 \mathrm{~s}, 412 \mathrm{~s} .402 \mathrm{~s}, 368 \mathrm{ml}, 323 \mathrm{w}$ (vPr-O-P) and (vPr-O-S). 286 m ($\mathrm{VPr}-\mathrm{O}-\mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): 2.88 (s. CH_{3}) and 5.69 (d. $\mathrm{J}_{H p}=$ 10.5 Hz . OMe) ppmı ${ }^{13} \mathrm{C}$ NMR (D.O): $38.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$ and $55.7(\mathrm{~s}$, OCH_{3}) ppm. ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): 41.0 (s) ppm.

Elemental analysis (\%) calcd. for $\mathrm{C}_{6} \mathrm{H}_{48} \mathrm{NO}_{1}=\operatorname{P} \cdot \operatorname{PrS}(531.12 \mathrm{~g} /$ mol): C. 13.55; H, 3.39; N. 2.64. Found. C. 13.43: H, 3.31: N, 2.56 .

X-ray Structure Analysis. The X-ray diffraction measurements were made on a Bruker APEX II CCD diffractometer for 1 and Bruker SMART 1000 CCD diffractometer for 2 (Mo-K α radiation. graphite monochromator. $\lambda=0.71073 \AA$). The structures of 1 and 2 were solved by SHELXTL ver. 5.1. ${ }^{39}$ The non-lydrogen atoms were refined anisotropically by a full-matrix least-squares method based on F^{2} using SHELXTL ver. 5.1 for 1 and $2 .{ }^{39}$

Results and Discussion

1 can be obtained by the reaction of NdCl_{3} with TEP in EtOH and DMSO as colorless prismatic ery stals according to Equation (1).

$$
\begin{array}{r}
\mathrm{NdCl}_{3}-5 \mathrm{n} \mathrm{OP}_{(}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3} \xrightarrow{\text { EtOH, DMSO }}-3 \mathrm{n} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl} \tag{1}
\end{array}
$$

2 can be obtained by the reaction of $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ with TEP in EtOH and DMSO as pale green needle crystals according to Equation (2).

$$
\begin{equation*}
\left.\mathrm{Pr}_{\mathrm{NO}}^{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{n} \mathrm{OP}\left(\mathrm{OCH}_{3}\right)_{3} \xrightarrow{\text { EHH DMSO }} \xrightarrow[-2 \mathrm{n} \Pi_{3} \mathrm{NO}_{3}]{\longrightarrow} \tag{2}
\end{equation*}
$$

$$
\left\{\mathrm{Pr}\left[\mu-\mathrm{O}_{2} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2}\right]_{2}\left(\mu-\mathrm{NO}_{3}\right)(\mathrm{DMSO})_{4}\right.
$$

Both complexes are air-stable. IR spectra of $\mathbf{1}$ and $\mathbf{2}$ show a very sharp absorption peak for the CH stretching vibrations in the range of ca 3013 to $2860 \mathrm{~cm}^{-1}$. Strong phosphate stretches at 1197 and $1168 \mathrm{~cm}^{-1}$ for 1 and 1243 and $1136 \mathrm{~cm}^{-1}$ for 2. Five strong sharp bands at 1181.1093 . 1066, 1054, and $1044 \mathrm{~cm}^{-1}$ for 1 and 1189.1160.1036. 1081 and $1020 \mathrm{~cm}^{-1}$ for 2 are due to C-O of P-O-C species. Bands at 825 and $778 \mathrm{~cm}^{-1}$ for 1 and 849 and $838 \mathrm{~cm}^{-1}$ for 2 corresponds to $\mathrm{v}(\mathrm{P}-\mathrm{O})$ of $\mathrm{P}-\mathrm{O}-\mathrm{C}$ phosphate ester fragment. $\mathrm{S}=\mathrm{O}$ stretching vibration for complex $\mathbf{2}$ is seen at $995 \mathrm{~cm}^{-1}$. Other $\operatorname{Pr}($ III $)$ DMSO complexes reported in the literature have shown $v(S=O)$ in the $992-998 \mathrm{~cm}^{-1}$ region. ${ }^{\text {ti }}$ Several bands in the $576-323 \mathrm{~cm}^{-1}$ spectral region are assigned to the $v(\mathrm{P}-\mathrm{O}-\mathrm{Nd}) . v(\mathrm{P}-\mathrm{O}-\mathrm{Pr})$ and $v(\mathrm{~S}=\mathrm{O}-\mathrm{Pr})$ stretching vibrations for complex 1 and $2{ }^{4(c)+1}$ The $\mathrm{Pr}-\mathrm{ONO}_{2}$ stretching vibration for complex 2 is seen at $286 \mathrm{~cm}^{-1}$. ${ }^{10}$ Our experimental

Table 1. Crystallographic and structure refinements data for complexes 1 and 2

	Complex 1	Compler 2
Formula	$\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{NdO}_{12} \mathrm{P}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{NO}_{12} \mathrm{P} \mathrm{P}_{3} \mathrm{PrS}$
Formula weight	603.51	531.12
Temperature $/ \mathrm{K}$	100(2)	120(2)
Crystal system, Space group	Triclinic, $P_{\text {F }}$	Monoclinic, P_{2} / c
Crystal size $/ \mathrm{mm}^{\text {t }}$	$0.22 \times 0.12 \times 0.09$	$0.55 \times 0.08 \times 0.06$
a/ \AA	10.2503 (9)	17.0016(11)
b / \AA	11.2599(9)	9.9709(7)
c / \AA	$20.6739(17)$	$10.1173(7)$
$\alpha /{ }^{\circ}$	$100.677(2)$	90
$\beta /{ }^{\circ}$	$90.619(2)$	97.0510(10)
$\gamma /{ }^{\circ}$	$92.061(2)$	90
Volume/ \AA^{3}	2342.9(3)	1702.1(2)
Z, Density (calc.)/ $\mathrm{g} \mathrm{cm}^{1}$	2, 1.711	4,2.073
θ ranges for data collection	1.84-27.88	2.37-29.00
$F(000)$	1212	1048
Absorption coefticient mm ${ }^{1}$	2.472	3.229
Index ranges	$-13 \leq h \leq 13$	$-23 \leq h \leq 22$
	$-14 \leq k \leq 14$	$-13 \leq k \leq 13$
	$-27 \leq 1 \leq 27$	$-13 \leq 1 \leq 13$
Data collected	26425	18172
Unique data ($\mathrm{R}_{\text {int }}$)	11174, (0.0250)	4500, (0.0380)
Final $\mathrm{R}_{1}, 4 \mathrm{R}$:	0.0254,0.0620	0.0390,0.0831
Goodness of tit on $\mathrm{F}^{2}(\mathrm{~S})$	1.027	1.040
Largest diff peak and hole/e \AA^{-3}	$1.784,-1.163$	3.117,-1.065

interpretations of the individual vibrational bands confirm the results of the previous findings on the infrared spectrum of solid NaDMP^{+2} and other ab initio computational calculations such as normal coordinate analysis of DMP. ${ }^{43}$

The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 exhibited two broad singlets for CH_{3} and $\mathrm{CH}_{2}(1.51$ and 4.69$)$ protons. The ${ }^{13} \mathrm{C}$ NMR spectrum of 1 showed two doublets for CH_{3} and $\mathrm{CH}_{2}(16.2$ and 63.3) in agreement with the suggested structure. The phosphorous groups are homotopic and show a singlet (40.2) in the ${ }^{33} \mathrm{P}$ NMR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 exhibited one doublet for $\mathrm{CH}_{3} \mathrm{O}$ (5.69) and one singlet for CH_{3} (2.88) protons. The ${ }^{13} \mathrm{C}$ NMR spectrum of 2 showed two singlets for CH_{3} and $\mathrm{CH}_{5} \mathrm{O}$ (38.9 and 55.7) in agreement with the suggested structure. The phosphorous groups are homotopic and show a singlet (41.0) in the ${ }^{31}$ P NMR spectrum.

Crystallographic data for $\mathbf{1}$ and $\mathbf{2}$ are given in Table 1 and selected bond lengths and angles are presented in Table 2 and 3 for $\mathbf{1}$ and 2 respectively. The structure of $\mathbf{1}$ consists of a [Nd $\left.(\mu \text {-DEP })_{2}\right]$ fragment and a repetition unit in this one-dimen-

Table 2. Selected bond lengths $/ A$ and angle $/{ }^{\circ}$ of 1

Nd(1)-O(24) 1	2.3118(18)	$\mathrm{O}(13) \cdot \mathrm{Vd}(1) \cdot \mathrm{O}(5)$	91.94(7)
$\mathrm{Nd}(1)-\mathrm{O}(9)$	$2.3157(17)$	$\mathrm{O}(24)=1-\mathrm{Vd}(1)-\mathrm{O}(1)$	90.25 (7)
	$2.3342(18)$	$\mathrm{O}(24)+1 \cdots \mathrm{Vd}(1)-\mathrm{O}(5)$	91.11(7)
$\mathrm{Nd}(1)-\mathrm{O}(13)$	$2.3424(18)$	$\mathrm{O}(9)-\mathrm{Nd}(1)-\mathrm{O}(5)$	89.91(6)
$\mathrm{Nd}(1)-\mathrm{O}(5)$	$2.3486(18)$	$\mathrm{O}(20)=1-\mathrm{Nd}(1)-\mathrm{O}(5)$	178.58(6)
$\mathrm{N} \mathrm{d}(1)-\mathrm{O}(1)$	$2.3564(18)$	$\mathrm{O}(9)-\mathrm{Nd}(1)-\mathrm{O}(1)$	$88.70(6)$
$\mathrm{P}(1)-\mathrm{O}(1)$	1.494 (3)	$\mathrm{O}(20) \div 1-\mathrm{Nd}(1)-\mathrm{O}(1)$	$93.21(7)$
$\mathrm{P}(1)-\mathrm{O}(2)$	1.496 (3)	$\mathrm{O}(13)-\mathrm{Nd}(1)-\mathrm{O}(1)$	178.60(6)
$\mathrm{P}(1)-\mathrm{O}(4)$	$1.585(4)$	$\mathrm{O}(5)-\mathrm{Nd}(1)-\mathrm{O}(1)$	86.67(7)
$\mathrm{P}(1)-\mathrm{O}(3)$	$1.586(3)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	115.28(11)
$\mathrm{O}(24)$ ¢ $1-\mathrm{Nd}(1)-\mathrm{O}(9)$	178.50(7)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(4)$	107.15(11)
$\mathrm{O}(24)+1-\mathrm{Nd}(1)-\mathrm{O}(20) \div 1$	87.47(7)	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(4)$	111.27(11)
$\mathrm{O}(24)+1-\mathrm{Nd}(1)-\mathrm{O}(13)$	89.57(7)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(3)$	110.45(11)
$\mathrm{O}(9)-\mathrm{N} d(1)-\mathrm{O}(13)$	$91.50(6)$	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(3)$	109.71(11)
$\mathrm{O}(20)+1 \cdot \mathrm{Nd}(1)-\mathrm{O}(13)$	88.17(6)	$\mathrm{O}(4)-\mathrm{P}(1)-\mathrm{O}(3)$	102.16(11)

Symmetry codes: $\mathrm{I}=\mathrm{x}-1 . \mathrm{y}, \mathrm{z}$

Table 3. Selected bond lengths $/ A$ and angle/ $/{ }^{\circ}$ of 2

$\mathrm{Pr}(1)-\mathrm{O}(1)$	$2.362(3)$	$\mathrm{O}(5)-\mathrm{Pr}(1)-\mathrm{O}(9)$	91.75(12)
$\mathrm{Pr}(1)-\mathrm{O}(5)$	2.376 (3)	$\mathrm{O}(2)+1-\mathrm{Pr}(1)-\mathrm{O}(9)$	139.63 (11)
$\operatorname{Pr}(1)-\mathrm{O}(2)=1$	2.378(3)	$\mathrm{O}(6)+2-\mathrm{Pr}(1)-\mathrm{O}(9)$	98.12(12)
$\mathrm{Pr}(1)-\mathrm{O}(6)$) 2	2.400 (3)	$\mathrm{O}(1)-\mathrm{Pr}(1)-\mathrm{O}(10)$	73.70 (11)
$\mathrm{Pr}(1)-\mathrm{O}(9)$	2.458(3)	$\mathrm{O}(5)-\mathrm{Pr}(1)-\mathrm{O}(10)$	114.72(11)
$\mathrm{Pr}(1) \mathrm{O}(10)$	2.645(3)	$\mathrm{O}(2)=1-\mathrm{Pr}(1)-\mathrm{O}(10)$	$142.39(10)$
$\mathrm{Pr}(1)-\mathrm{O}(10)=1$	$2.692(3)$	$\mathrm{O}(9)-\mathrm{Pr}(1)-\mathrm{O}(10)$	$73.30(10)$
$\mathrm{Pr}(1)-\mathrm{O}(12)=1$	2.757 (3)	$\mathrm{O}(1)-\mathrm{Pr}(1)-\mathrm{O}(10) \div 1$	139.51(11)
$\mathrm{Pr}(1)-\mathrm{O}(11)$	2.789 (4)	$\mathrm{O}(5)-\mathrm{Pr}(1)-\mathrm{O}(10) \div 1$	$68.85(10)$
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.494(3)$	$\mathrm{O}(1)-\mathrm{Pr}(1)-\mathrm{O}(11)$	$74.30(11)$
$\mathrm{P}(1)-\mathrm{O}(2)$	$1.496(3)$	$\mathrm{O}(5)-\mathrm{Pr}(1)-\mathrm{O}(11)$	67.79(11)
$\mathrm{P}(1)-\mathrm{O}(4)$	$1.585(4)$	$\mathrm{O}(9) \cdot \mathrm{Pr}(1)-\mathrm{O}(11)$	71.41(11)
$\mathrm{P}(1)-\mathrm{O}(3)$	1.586(3)	$\mathrm{O}(10)-\mathrm{Pr}(1)-\mathrm{O}(11)$	47.04(10)
$\mathrm{O}(1)-\mathrm{Pr}(1)-\mathrm{O}(5)$	87.47(12)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	118.31(19)
$\mathrm{O}(1)-\mathrm{Pr}(1)-\mathrm{O}(2) \div 1$	77.13(11)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(4)$	110.3 (2)
$\mathrm{O}(5)-\mathrm{Pr}(1)-\mathrm{O}(2)=1$	86.83(12)	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(4)$	105.5(2)
$\mathrm{O}(1) \cdot \mathrm{Pr}(1)-\mathrm{O}(6)+2$	83.97(12)	$\mathrm{O}(1) \cdot \mathrm{P}(1)-\mathrm{O}(3)$	105.86(19)
$\mathrm{O}(5)-\mathrm{Pr}(1)-\mathrm{O}(6) \div 2$	170.06(12)	$\mathrm{O}(2) \cdot \mathrm{P}(1)-\mathrm{O}(3)$	$110.60(1.9)$
$\mathrm{O}(1)-\mathrm{Pr}(1)-\mathrm{O}(9)$	143.16(12)	$\mathrm{O}(4) \cdot \mathrm{P}(1)-\mathrm{O}(3)$	$105.7(2)$

[^0]sional polymer. As is clear from an ORTEP view of the compound. Fig. l(a). the repeation unit of this linear polymer consists of 6 -coordinated neodymium atoms, which are linked together via six O-P-O bridges from phosphate esters.

The phosphate groups in $\left[\mathrm{Nd}(1 \mathrm{l}-\mathrm{DEP})_{3}\right]_{n}$ are arranged as an abnormal distorted tetrahedron. The angles of O-P-O and $\mathrm{EtO}-\mathrm{P}-\mathrm{OEt}$ are unequal. The angle of the $\mathrm{EtO}(3)-\mathrm{P}(1)-\mathrm{O}(4) \mathrm{Et}$ moiety is $102.16(11)^{\circ}$. whereas that of $\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$ is $115.28(11)^{\circ}$. According to a survey on similar polymeric [Cez-$\left.(\mu-\mathrm{DEP})_{6}(\mathrm{TEP})\right]_{n}$ complexe, an acceptable reason is simultaneous z-in and z-out distortions for the DEP. In addition. the conformation of the DEP anion depends on the C-O-P-O angles. In this complex, ${ }^{33}$ we observed the gt (gauche, trans) conformation for the DEP base on the dihedral angles. At this complex. for example, the dihedral angles of one of the DEP

(b)

Figure 1. Graphical representation of 1 (40% probability for the thermal ellipsoids) (a) and the unit cell-packing diagram of 1 (b). Hydrogen atoms are omitted for clarity.
ligands are: $\mathrm{C}(1)-\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{O}(4)=-177.4(2)^{\circ}$ and $\mathrm{C}(3)-\mathrm{O}(4)-$ $\mathrm{P}(1)-\mathrm{O}(3)=-75.5(2)^{\circ}$. The unit cell packing diagram of the complex 1 is shown in Figure l(b).

The structure of 2 consists of a $\left[\operatorname{Pr}(\mu-\mathrm{DMP})_{2}\left(\mu-\mathrm{NO}_{3}\right)\right.$ (DMSO)] fragment and a repetition unit in this one-dimensional polymer. An ORTEP plot (Fig. 2(a)) shows that the complex consists of one praseodymium, which is linked to other fragments via four O-P-O bridges of four phosphate esters: also. one DMSO and two nitrate are linked to each praseodymium wia its oxygen atom during chelating and bridging. There is a 4 -membered circle created by the cooperation of two oxygen atoms of nitrate ion (O11.O12) and a central Pr atom. In addition. a third oxygen atom (Ol0) of nitrate also forms a bridge between two neighbor Pr atoms. Figure 2(a) shows the polymeric structure of the title complex, which the (O-P-O) moieties of the phosphate form a double bridge between two praseodymium. The DMSO molecule appears as a monodentate ligand on every single Pr atom.

The phosphate groups. $\left[\operatorname{Pr}(\mu-\mathrm{DMP})_{2}\left(\mu-\mathrm{NO}_{3}\right)(\mathrm{DMSO})\right]_{n-}$. are arranged as an abnormal distorted tetrahedron. The angles of $\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$ and $\mathrm{MeO}(3)-\mathrm{P}(1)-\mathrm{O}(4) \mathrm{Me}$ are unequal. The angle of the $\mathrm{MeO}(3)-\mathrm{P}(1)-\mathrm{O}(4) \mathrm{Me}$ moiety is $105.7(2)^{\circ}$. whereas that of $\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$ is $118.31(19)^{\circ}$. According to a survey on similar polymeric La complex ${ }^{36}$ an acceptable reason is simultaneous z-in and z-out distortions for the DMP. In addition. the conformation of the DMP anion depends on the C-O-P-O torsion angles. In this complex. we expectedly observed the gg (gauche. gauche) conformation for the DMP base on the dihedral angles. At this complex, for example. the

Figure 2. Graphical representation of $2(40 \%$ probability for the thermal ellipsoids) (a) and the unit cell-packing diagram of 2 (b). Hydrogen atoms are omitted for clarity.
torsion angles of one of the DMP ligands are: $\mathrm{C}(3)-\mathrm{O}(3)-$ $\mathrm{P}(1)-\mathrm{O}(4)=-76.0(4)^{\circ}$ and $\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{P}(1)-\mathrm{O}(3)=-95.8(5)^{\circ}$. Each Pr center occupies an irregular distorted tricapped trigonal prismatic geometry with the DMSO ligand in the vertical position. The angle of $\mathrm{S}(1)-\mathrm{O}(9)-\mathrm{Pr}(1)$ is $128.70(19)^{\circ}$. The large mentioned angle may belong to a steric hindrances induced by the methyl groups of DMSO, and lone pairs on the oxygen of DMSO with the Pr atomenvirmment. According to experimental geometry data for DMSO, the bond angles are $\operatorname{CSC}=96.6^{\circ}$ and $\operatorname{CSO}=106.5^{\circ}$. At this complex the bond angles of the DMSO ligand are: $\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(2): 99.5(2)^{\circ}, \mathrm{O}(9)-\mathrm{S}(1)-\mathrm{C}(1)$: $105.1(2)^{\circ}$ and $\mathrm{O}(9)-\mathrm{S}(1)-\mathrm{C}(2)$: $105.3(2)^{\circ}$. Therefore we observed that they have almost not changed. It is clear from Figure 2(a) that. a Pr ion is connected to adjacent Pr by bridging of four DMP and two nitrate ions. These infinite chains are packed along the b-axis to create the channels to which O-Pr bond of DMSO molecules are perpendicular. The unit cell packing diagram of the complex 2 is shown in Figure 2(b).

Supplementary Materials. CCDC 693501 and 693502 contain the supplementary crystallographic data for $\mathbf{1}$ and $\mathbf{2}$ respectively. These data can be obtained free of charge wia http:-1ww.ccdc.cam.ac.uk conts retrieving hom, or from the Cambridge Crystallographic Data Centre. 12 Union Road. Cambridge CB2 1EZ. UK: fax: $(++4) 1223336033$; or e-mail: depositaccac.cam.ac.uk.

References

1. Weis, K.; Valuenkamp, H. Eur. J. Inorg. Chen. 1998, 271.
2. Trösch, A.: Valrenkamp, H. Inorg. Chem. 2001, $10,271$.
3. Jurek, P. E.; Martell, A. E. Inorg. Chem. 1999, 38, 6003.
4. Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Fusi, V.; Giorgi, C.; Paoletti, P.: Valtancoli, B.: Zanchi, D. horg. Chem. 1997, 36, 2784.
5. Jones, D. R.; Lindoy, L. F.; Sargeson, A. M.; Snow, M. R. Ihorg. Chem. 1982, 21, 4155.
6. Hikichi, S.: Tanaka, M.; Moro-oka, Y.; Kitajima, N. J. Chem. Soc., Chem. Commum. 1992, 814.
7. Wall, M.: Hynes, R. C.: Chin, T. Anger, Chem., Int. Ed. Engl. 1993, 32, 1633.
8. Mahroof-Tahir, M.: Karlin, K. D.: Chen, Q.; Zubieta, T. Inorg. Chim. Acta 1993, 207, 135.
9. Adams, H.; Bailey, N. A.; Fenton, D. A.; He, Q.-Y. J. Chem. Soc', Dalton Trans. 1995, 697.
10. Yan, S.; Pan, X.; Taylor, L. F.; Zhang, J. H.; O'Connor, C. J.; Britton, D:; Anderson, O. P:- Que, L. Inorg. Chim. Acta 1996, 243, 1 .
11. Kövari, E.; Krämer, R. J. Am. Chem. Soc. 1996, 118, 12704.
12. Koike, T.; Inoue, M.; Kimura, E.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 3091.
13. He, C.: Gomez, V.: Spingler, B.: Lippard, S. J. horg. Chem. 2000, 39, 4188.
14. Yamaguchi, K.: Akag̣i, F.; Fujinami, S.; Suzuki, M.: Shionova,
M.; Suzuki, S. Chem. Commum. 2001, 375.
15. Tanase, T.; Watton, S. P.: Lippard, S. J. J.Am. Chem. Soc. 1994 , 116,9401.
16. Albehyl, S.: Averbuch-Pouchot, M. T., Belle, C.: Krebs, B.; Pierre, J. L.; Saint-Aman, E.; Torelli, S. Eur. J. Inorg. Chem. 2001, 1457.
17. Kimura, E.; Aoki, S.: Koike, T.: Shiro, M. J. Am. Chem. Soc. 1997, 119, 3068.
18. Spiccia, L.: Graham, B.: Hearn M. T. W., Lazarev, G., Moubaraki, B.; Murray, K. S.; Tiekink, E. R. T.J. Chem. Soc., Dolton Trons. 1997, 4089.
19. Ye, B.-H.: Li, X.-Y.: Xue, F.: Mak, T. C. W. Chem. Commm. 1997, 2407.
20. Cargill Thompson, A. M. W.: Bardwell, D. A.: Ieffery, J. C.: Ward, M. D. Inorg. Chim. Acto 1998, 267, 239.
21. Moubaraki, B.: Murray, K. S.: Ranford, T. D.; Wang. X.; Xu,Y. Chem. Commum. 1998, 353.
22. Paul, R. L.; Amoroso, A. T.; Jones, P. L.; Couchman, S. M.; Reeves, Z. R.: Rees, L. H.; Jeffery, J. C.: Mcleverty, I. A.; Ward, M. D. J. Chem. Soc. Dalton Trons 1999, 1563.
23. Angeloff, A: Darant J.-C.: Benadou, T; Meunier, B. J. Organomet. Chem, 2001, 62t, 58.
24. Yamami, M.; Furutachi, H.; Yokoyama, T.; Ohawa, H. Inorg. Chem. 1998, 37, 6832.
25. Aoki, K. J. Chem. Soc., Chem. Commun. 1977, 600.
26. Cini, R.; Marzilli, L. G. Inorg. Chem. 1988, $27,1856$.
27. Weis, K.; Rombach, M.; Valrenkamp, H. Morg. Chem. 1998, 37, 2470 .
28. Müller-Hartmann, A.: Vahrenkamp, H. Ew. J. Inorg. Chem. 2000, 2355.
29. Gross, F.; Müller-Hartmann, A.; Vahrenkamp, H. Eur. J. Inorg. Chem. 2000, 2363.
30. Ratizadeh, M.; Amani, V.; Broushaky, M. Anal. Sci. 2006, 22, x113.
31. Ratizadeh, M.; Amani, V. Anal. Sci. 2006, 22, xlll.
32. Ratizadeh, M.; Hoseinzadeh, F.; Amani, V. Anal. Sci. 2006, 22, 3 .
33. Amani, V.: Ratizadeh, M.: Yousefi, M.: Zargar, N. S. Anal. Sci. 2006, 22, 3303.
34. Rafizadeh, M.: Amani, V.: Aghayan, H. Acta Cnstallogr. 2006. E62, m2150.
35. Ratizadeh, M.; Tayebee, R.; Amani, V.; Nasseh, M. Bull. Korem Chem. Soc. 2005, 26, 594.
36. Ratizadeh, M.; Amani, V.; Farajian, H. Z. Anorg. Alleg. Chem. 2007, 633, 1143.
37. Ratizadeh, M.; Amani, V. Acta Crystallogr: 20066, E62, ml 776.
38. Ratizadeh, M.; Amani, V. Z. Anorg. Allg. Chem. 2007, 633, 2738.
39. Sheldrick, G. M. SHELITL, v. 5.10, Structure Detemmination Software Suite; Bruker AXS: Madison, Wisconsin, USA, 1998.
40. Nakamato, K. Infrared and Raman Spectra of Inorganic and Coordnation Compomds. Part B. Applications in Coordination, Orgononetallic, and Bioinorganic Chemistry, $5^{\text {th }} \mathrm{ed}$.; Johrr Wiley \& Sons: New York, 1997.
41. Balagina, M.; Banishev, F;; Voronko, K.; Osiko, V.; Sobol, A; Chudinova, N. Iz'. Akad. Nauk SSSR, Neorg Mater. 1985, 21, 712.
42. Fry, F. H.; Tensen, P.; Kepert, C. M.; Spiccia, L. Inorg. Chem. 2003, 42,5637.
43. Florian, J.; Baumruk, V.; Strajbl, M.; Bednarova, L.; Stepanek, I. J. Phus Chem. 1996, 100, 1559.

[^0]:

